\

USER'S MANUAL NEC

V810 FAMILY ™

32-BIT MICROPROCESSOR

ARCHITECTURE

v80o5™
v81i0™
v820™
vg821™

Document No. U10082EJ1VOUMOO (1st edition)
Date Published October 1995P
© NEC Corporation 1995 Printed in Japan

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once it has occurred. Environmental control must be
adequate. When itis dry, humidifier should be used. Itis recommended to avoid using insulators
that easily build static electricity. Semiconductor devices must be stored and transported in an anti-
static container, static shielding bag or conductive material. All test and measurement tools
including work bench and floor should be grounded. The operator should be grounded using wrist
strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to
be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/0 settings or contents of registers. Device is notinitialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

V805, V810, V820, V821, V830, V851, V810 family, V850 family, and V800 series are trademarks of
NEC Corporation.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does notassume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

“Standard”, “Special”, and “Specific”. The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program” for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices in “Standard” unless otherwise specified in NEC’s Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M7 94.11

Readers

Purpose

Organization

How to read this manual

Legend

INTRODUCTION

This manual is intended for users who understand the functions of the V810
family and wish to design application systems using this microprocessor.

This manual introduces the architecture of the V810 family to users, following
the organization described below.

The V810 family User’'s manuals consist of the hardware and architecture (this
manual) versions for each device.

| Architecture |

Pin functions Register set
CPU functions Data type
Internal peripheral functions Address space

Instruction format and instruction set
Interrupt and exception
Reset

It is assumed that the reader of this manual has general knowledge in the fields
of electric engineering, logic circuits, and microcomputers.

To learn about the functions of the hardware,
—> Read "USER’'S MANUAL-HARDWARE" of each device.

To learn about the detailed function of a specific instruction,
—> Read chapter 5 "INSTRUCTION FORMAT AND INSTRUCTION SET."

To learn about electrical specifications,
—> Refer to data sheet of each device.

To learn about the overall architecture of the V810 family,
—> Read this manual in sequential order.

For the V810 family, data consisting of 2 bytes is called a halfword, and data
consisting of 4 bytes is called a word.

Data significance : Higher on left and lower on right
Active low : XXX (top bar over pin and signal names)
Memory map address : Top — high, bottom — low
Note . Footnote
Caution : Points to be noted
Remark . Supplementary explanation for main text
Numeric representation : binary................. XXXX Or XXXXB
decimal XXXX

Related documents

Suffix representing an exponent of 2 (Address space, memory capacity):
K (Kilo) =2 =1024
M (Mega) = 22° = 10242
G (Giga) =2%0=1024°

The related documents indicated in this publication may include preliminary

versions. However, preliminary versions are not marked as such.

Part Number Document Name Document No.
V805 Data Sheet ID-3292
V805 User’'s Manual IEU-1371
V810 Data Sheet ID-3293
V810 User’s Manual IEU-1370
V805/v810 User’'s Manual Hardware To be published
V820 Data Sheet ID-3301
User’s Manual IEU-852*
V821 User’'s Manual Hardware U10077J*
CA732 User’'s Manual Operation EEU-952*
(C compiler UNIX™ base
package) C language EEU-966*
Assembly EEU-953*
language
Remark Asterisks in the table indicate the document numbers of the

Japanese versions.

prepared or will be prepared soon.

Their English versions may not be

CONTENTS

CHAPTER 1 OVERVIEW ..ttt et e e e e e e e e e e et e e ee e 1
I R T LB [€ TP PUPPP PP STRTRPIN 2

1.2 ProducCts DeVEIOPMENT ..ottt e e e e ettt e e e e e sttt e e e e e eaee e e e e e anta e e e e e e annaneeaeean 3
CHAPTER 2 REGISTER SET ..ttt e e e e e e e e e e e e e e ba b e e e e e eaeaaaeenenes 5
2.1 Program ReQISIEI SEU ittt e e e e ettt e e e et e e e e e e e et e e e e e e nb e e e e e e e ntaereaeeanneees 6
2.1.1 GENETal-PUIPOSE TEGISTEIS wuiiiiiiiiiiiiie e ittt e e et e et e e e et e e e e e et a e e e e e sabb e e e e s snntaeeeeesssseees 6

2.1.2 PrOQIam COUNTET ..ttt ettt e e e e e e e e e e e e e e s e e e bbbt bt sttt et ettt e e e eaeaaeaaaaaaaaaaa s nsanbbbbebss s s e e eeeeaeaeeeas 7

D A (] 4 T =T o] (=] T U PPERR 8
2.2.1 Exception/interrupt status saving registers (EIPC/EIPSW)ccocoviiiieiiiiiiiiee e 8

2.2.2 NMl/duplexed exception status saving register (FEPC/FEPSW)cooiiviiiiiiiineenie. 8

2.2.3 Exception source regiSter (ECR) ...ttt e e 9

2.2.4 Program Status WO (PSWW) ..ottt e et e e e e et ae e e e e e nnnnees 9

2.2.5 Processor ID regiSter (PIR) ..o ittt ettt e e e e e e e e nn e e e e aneeeeas 12

2.2.6 Task control WOrd (TKCW) ..ottt e e ettt e e e e et e e e e e e nntae e e e e e annees 13

2.2.7 Cache control WOrd (CHCW) ...ttt e e et a e e e e snrae e e e e e entanes 14

2.2.8 Address trap register (ADTRE) ...t e e e e e e e eneeeeas 15

2.2.9 SyStem regiSter NUIMDEToiii ettt e e e ettt e e e e e nber e e e e e e snneeeae e e aneeeeas 15
CHAPTER 3 DAT A TY PES i e e e ettt et a e e e e e e e e eeennnes 17
70 R B T = B Y] o TSI IS 1 U o] o To] £ SRS RR R 17
3.1.1 Data type and addrESSING . ..cieeiiiieiiieeiiiiit e et e e e e e e e e e e e e e e s e e e e araaas 18

T 2 1 1 (=To =T TSP TP PPPPPPPPPPPPP 19

I 70 IS B U | E{To o T=To T oL C=To = RSP RRR P 19

I 0 B Y1 Y 1 1 o O PRSSPPPPRP 19

3.1.5 Single-precision floating-point datacooouiiiiiiiiii e 20

R T B T\ = B AN 1o | o 4 1T oL SRS RR U 20
CHAPTER 4 ADDRESS SPACE ...t e e ettt a e e e e e e aeeeeneees 21
R |V 1= ¢ 4 To VA= Vg Lo I 1L @ Y/ oY o USSR 22

o o [0 | =11 [To T 1Y o Lo [T SRS PPRRR RSP 24
4.2.1 INSTIUCTION GAAIESS . .eieiiiiei ittt e et e e e e ettt e e e e e sbee e e e e e e baeeeaeeaannseeeeeeaanneneaaaeane 24

o A O] o T=T =Yg o BT [0 =T PRSP 27
CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET ... 29
LU0 R 1 1S A €U o3 1o N o] 01 - SRR 29

5.2 INSrUCHION OULHNE oottt ettt 31

LT T 1 153 1 U ol 1o o Y= AR SRR 39

5.4 Instruction EXecution CIOCK CYCIES ..ottt e e e e et e e e e ennaeeeas 107
5.4.1 NOIMAl INSTFUCTION ...iiiiiiiiiiiii ettt 107

5.4.2 Search bit String INSIFUCLIONSuiiiiiiiieiii et e e e e e e e e e e neeeeas 110

5.4.3 Arithmetic bit StriNg INSTIUCTIONSciiiiiiei et e e e e e 114

CHAPTER 6 INTERRUPT AND EXCEPTION ...oiiiiiiiiiieiiiiiieee et 117

(ST R = (ol =T o (o] g I ol o Tt =31 o Lo USRS 118

(oI 1 1 (T ¢ U] o1l o o Tt 21 o Lo USSR 119
6.2.1 MaASKADIE INTEITUPT ..eeiiiiiiiiiiee et e et e e e e et e e e e s e abb e e e e s snbaeeeeesansaeees 119

6.2.2 NON-MASKADIE INTEITUPL ...t e e ettt e e e et e e e e e et e e e e ennees 121

6.3 Returning from EXCeption/INTEITUPL ..ot e e et e e e 122

L2 A = AT 11 SRR PPERRRSP 123
6.4.1 Priorities of interrupts and eXCEPLIONSoiiiiiiiiiie et e e e 123

6.4.2 Priorities of floating-point @XCEPLIONSoii i 124

6.4.3 Interrupt €XECULION tIMING ..viiiiiiiiiiei et e e et e e e e et e e e e s ssb e e e e e s ansnees 124
CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS ...ttt 125
CHAPTER 8 DEBUG SUPPORT FUNCTION ...ttt ettt e e e eeeeennnes 129
CHAPTER O RESET ittt ettt ettt et et e e e e e e e e e e e s e e s e bbbt s e e e e ee e 131
LS R [0 11 = 1 4= 1A o] o PP PP PPRR PP 131

LS B S - U 1] o [0 o USSP SRR P 131
APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)cccoiiiiiiiiiiieiieceee e 133
APPENDIX B INSTRUGCTION LIST ..ottt ettt sttt sene e 141
APPENDIX C OP CODE MARP ...ttt ettt ae bt h et bbbt e bt e e b bt e bt e e hb e ekt e e ab e e bt e asneene e e 143

LIST OF FIGURES

Fig. Title Page
2-1 PrOgram REQISIEIS ..ttt e ettt e e e ookttt e e e e e atb et e e e e e b bt e e e e e aanneaeeaeaeansbseaeeeannnaeeeaeaannes 6
2-2 SYSIEIM REGISIEIS ...uitiiii ettt e ettt e e e e e et e e e e s st e et e e e e s tb e e e e e e e sbebeeeeeaatbeaeeeessteeeaeeeansanaeaean

4-1 Y =70 0 o] VAN =T o TP UPPPPPPTPTP 22
4-2 LT @ Y- o PP UP S PPPPRPOt 23
4-3 Relative Addressing (JR diSP26/JAL diSP26) ..cceiiuuuiiieeeiiiiiiee et a et a e e e nneaeeeeeaanees 24
4-4 Relative Addressing (BCONG diSPO)uueiiiaiiiiiiiie ettt e e ettt e e e e e e e e e e e nbae e e e e e anaeeeeaeanns 25
4-5 Register AAAresSong (JMP [FEGL]) cooouuiiii ettt e e et e e s et e e e e et e e e e s ssbbeeeeesnntbeeeaesaanes 26
4-6 2 F- R =T BN [0 | £ ST1S1 T o Vo [PPSRt 27
7-1 (O 1ol o [Ofo | {To [V] =14 o] o [F USSP PRSPPI 125
7-2 CaChE DUMP FOIMAL .ottt ettt e e e oottt et e e e e nte et e e e e e sbe e e e e e e anntaeeeeaeannaneeaeeaannnneaaens 127

LIST OF TABLES

Table Title Page
5-1 LOAd/SEONE INSTIUCTIONS ...eiiiiiiiiiiii ettt e e et e e e e e ettt e e e e e nate e e e e e e nsaeeaeeeannbbeeaeeeannaneeeeeanns 31
5-2 Integer Arithmetic Operation Instructions 32
5-3 Logical Operation INSIFUCTIONSii ittt e e e e ettt e e e e e e aee e e e e e e annteeeaeeannraeeaaeaannes 33
5-4 T4 @ I 1 1S U ol 1o [PRSP R T TOPPRRN 34
5-5 Program CoNntrol INSTIUCTIONSiiii ittt e st e e st e e e s st a e e e e e s sabbeeeeessntbeeeeesanne 35
5-6 Bit String INStructionsccccoocieiieriiieieee e, .. 36
5-7 Floating-Point Operation INSTIUCTIONSiuiiiiii et e et e e e et e e e e e nneaeeeeeaannes 37
5-8 SPECIAI INSIIUCTIONS ..ottt et e e e et e e e e ettt e e e e et et e e e e e asata e e e e e e satbeeeeesansanaeaean 38
5-9 Conditional BranCh INSIIUCHIONSceiiiiiiiii et e et e e e et e e e e e e e e e e e enneeeaaeas 50
5-10 (0] Lo 1140 o I ©Fo o [PRSPPI 91
5-11 Instruction EXECUtiON CIOCK CYCIES ...uuuiiiiiiiiiiiiie ettt e et e e e et e e e e et e e e e s snaeaaeeenanes 107
5-12 Execution Clock Cycles of Search Bit String INSTrUCHIONScooiiiiiiiiiiee e 110
5-13 Execution Clock Cycles of Arithmetic Bit String INStrUCLIONScooiiiiiiiiiiiiiiiee e 114
5-14 Boundary Condition of Arithmetic Bit String INStrUCLIONSccooiviiiiiiiiiiiiee e 115
6-1 oD (eT=T o (o] I @0 Yo =TSP SPPPRR 117
6-2 INStructions AbOrted DY INTEITUDTuviiii e e e e e e st e e e e e et aeaeeesannes 117
6-3 Priorities of Interrupts and EXCEPLIONS ...cooiiiiiiiiiiiiie ettt e e e e e e e e e e eanes 123
6-4 Priorities of Floating-Point Exceptions

9-1 RegiSter STatUS after RESELiiiiiiiiiie et 131
A-1 Instruction Mnemonics (alphabetiCal Order)oocuiiiii i 134
B-1 Y LT 0 Lo oYL I 1 PSPPSR OPPRRN 141
B-2 INSTFUCTION ST ..ttt bbbkttt e ettt e bt e e bt e ebe e et e st e e neene e 142

-iv -

CHAPTER 1 OVERVIEW

The V810 family consists of NEC's RISC microprocessors using the V810 as the CPU core and is designed
for embedded control applications.

CHAPTER 1 OVERVIEW

1.1 Features

e High-performance 32-bit architecture for embedded control application
e 1K-byte cache memory
* Pipeline structure of 1 clock pitch
e 16-bit instructions (with some exceptions)
e Separate 32-bit address/data buses
e 32-bit general-purpose registers: 32
e 4G-byte linear address space
« Register/flag hazard interlocked by hardware

e Instructions ideal for various application fields
e Floating-point operation instructions (based upon IEEE754 data format)

e Bit string instructions

e 16 levels of high-speed interrupt responses

CHAPTER 1 OVERVIEW

1.2 Products Development

The V810 family is one of the V800 series™ and a group of products which use the RISC microprocessor V810
as its CPU core.

The product development shown in the following diagram is performed for the V800 series, enabling it to be
applied in various embedded control application fields. The V850 family™ is a single-chip microprocessor for
control purposes while the V810 family is a microprocessor for data processing purposes. The V830 family, an
advanced high-speed version, is also available.

Products development

V800 Series
/] N
V830 Family
4 N
V850 Family
J
/
e N
V810 Family
J
\ J

CHAPTER 1 OVERVIEW

[MEMO]

CHAPTER 2 REGISTER SET

The register set of the V810 family can be classified into two types: program register set that is generally used
by the programmer, and system register set that is usually used by the OS (operating system). All registers are
32 bits wide.

CHAPTER 2 REGISTER SET

2.1 Program Register Set

2.1.1 General-purpose registers
Thirty-two general-purpose registers, r0 to r31, are available. All these registers can be used as data registers
or address registers.

Note, however, that rO and r26 to r31 are implicitly used by instructions.

1)

Hardware-dependent registers
These registers are fixed to a certain value by the hardware, Fig. 2-1 Program Registers
or implicitly used by an instruction.
31 0
rO : (zero register)
This register always holds 0. 0

Zero Register

rl Reserved for Address Generation
r26 : (string destination start bit offset) 12 Handler Stack Pointer (hp)

This register stores a bit offset in the word of the | 5
destination operand of a bit string instruction. Bits 31 | ,

Stack Pointer (sp)

Global Pointer (gp)
through 5 of this register are automatically cleared 5

before the instructionis executed. Ifinterrupt processing 6
is executed, this register stores the offsetvalueinthe |

Text Pointer (tp)

resume word. 8

r27 : (string source start bit offset) 110
This register stores the bit offset in the word of the | .44
source operand of a string instruction. 12
Bits 31 through 5 of the register are automatically | 43
cleared before the instruction is executed. If interrupt 14
processing is executed, the register stores the offset | ;5

value in the resume word. 16
ri7
r28 : (string length register) 118

This register stores the number of bits for string 19
processing by a bit string instruction. If the processing 120
of the instruction is aborted by an interrupt, the | ,;

register holds the remaining length. 22
123
r29 : (string destination start address register) 124

This register holds a destination operand start word | o5

addresswhenabit string transfer instructionis executed. 126 String Destination Bit Offset
Bits 1 and 0 of the register are automatically cleared | 57 sying source Bit Offset

to 0 before the instruction is executed. Ifthe processing 128 String Length
of the instruction is aborted by an interrupt, the | g
register holds the resume start word address. 130 String Source

When a search instruction is executed, this register | 51 | ink pointer (Ip)

String Destination

holds the sum of the number of bits skipped. If the

processing is aborted by an interrupt, the register

holds the number of bits skipped before the processing pC

is aborted.

CHAPTER 2 REGISTER SET

r30

r3l

. (string start address register)

This register holds the source operand start word address of a bit string instruction. If the processing
of the instruction is aborted by an interrupt, the register holds the resume word address. Bits 1 and
0 of the register are automatically cleared before the instruction is executed.

When the CAXI instruction is executed, this register holds the value to be set to the lock word.
When the MUL/MULU instruction is executed, the register holds the higher 32 bits of the result of
multiplication.

When the DIV/DIVU instruction is executed, the register holds the remainder of the result of division.

. (link pointer)

This register implicitly stores the return destination address of the JAL instruction.

(2) Software-reserved registers
These registers are implicitly used by the assembler and compiler. When these registers are used as

variable registers, save the contents of the registers so that they are not destroyed, and later restore the

register contents.

For details, refer to the manual of the assembler/compiler.

ri

r2

r3

r4

r5

. (assembler-reserved register)

This is a working register for creating 32-bit immediate, and is implicitly used when the assembler
calculates an effective address.

. (handler stack pointer)

This register is reserved as the stack pointer of the handler.

. (stack pointer)

This register is reserved for stack frame creation when a function is called.

. (global pointer)

This register is used to access a global variable in the data area.

. (text pointer)

This register points to the beginning of the text area.

2.1.2 Program counter

The program counter (PC) indicates the address of the instruction currently executed by the program. Bit 0
of the PC is fixed to 0, and execution cannot branch to an odd address. The contents of the PC is initialized to
FFFFFFFOH at reset.

CHAPTER 2 REGISTER SET

2.2 System Register Set

The system registers control the status of the processor, hold exception/interrupt information, and manage
tasks. They are managed mainly by the OS.

Fig. 2-2 System Registers

EIPC | PIR |
EIPSW
| TKCW |
FEPC
| CHCW |
FEPSW
| ADTRE |
| ECR |
| PSW |

2.2.1 Exception/interrupt status saving registers (EIPC/EIPSW)

EIPC and EIPSW are registers that save the current contents of the PC and PSW if an exception or interrupt
occurs. The contents of the PC are saved to EIPC, while the contents of the PSW are saved to EIPSW. Since
only one set each of EIPC and EIPSW are available, these registers must be saved by program if multiplexed
exception or interrupt is enabled.

Bit 0 of EIPC and bits 31 through 20, 11, and 10 of EIPSW are fixed to 0. The contents of the PC and PSW
are not saved to these EIPC and EIPSW, but to FEPC and FEPSW, if an exception occurs while the EP bit of the
PSW is set (duplexed exception or fatal exception), or when NMI occurs.

31 0

EIPC/EIPSW

2.2.2 NMl/duplexed exception status saving register (FEPC/FEPSW)

If NMI or duplexed exception (exception that occurs when EP = 1) occurs, the current contents of the PC and
PSW are saved to FEPC and FEPSW, respectively. The PC and PSW contents are saved to these registers in
case of an emergency. Therefore, if this happens, appropriate processing must be started immediately. Bits O
of FEPC and bits 31 through 20, 11, and 10 of FEPSW are fixed to 0.

FEPC/FEPSW

CHAPTER 2 REGISTER SET

2.2.3 Exception source register (ECR)
The ECR register holds the source of an exception, maskable interrupt, or NMI that has occurred. The value
held by ECR is coded for each exception source (refer to CHAPTER 6 INTERRUPT AND EXCEPTION).
This register is a read-only register, and data cannot be written to it by using the LDSR instruction.

31 16 15 0
T T
ECR FECC EICC
Bit position Field Meaning
31-16 FECC Exception code in case of NMl/duplexed exception
15-0 EICC Exception code in case of interrupt/exception

2.2.4 Program status word (PSW)

The program status word (PSW) is a collection of flags that indicate the status of the program (result of
instruction execution) and the status of the processor. If a field of this register is changed by using the LDSR
instruction, the changed contents become valid immediately after execution of the LDSR instruction has been
completed.

-~~~ Floating Precision
7777777 Floating Underflow

oo Floating Overflow

31 20191817161514131211109 8 76 5 4 3 2 1 0
T T T T T T T T
FIF|F|F|F
psw REU é;l(‘)ﬁgél'am:u |ZOUP$882
v|p|v|p|r
\—Y—‘ [L A | I
C L T zero
A Sign
11 111:‘ ”””” Overflow
L R Carry

it Floating Zero Divide
i Floating Invalid

****************** Floating Reserved Operand

***************** Interrupt Disable
******************* Address Trap Enable

ffffffffffffffffffffff Exception Pending

fffffffffffffffffffffffff NMI Pending

——————————————————————————————— Interrupt Level

CHAPTER 2 REGISTER SET

Bit position Flag Meaning
31-20 RFU Reserved field (fixed to 0)
19-16 13-10 Interrupt Level
Maskable interrupt enable level
15 NP NMI Pending
Indicates that NMI processing is in progress. This flag is set when NMI is accepted, and NMI is
masked and multiplexed interrupt is disabled.
NP =0 : NMI processing is not in progress
NP =1 : NMI processing is in progress
14 EP Exception Pending
Indicates that exception, trap, or interrupt processing is in progress. This flag is set when
exceptional event occurs and masks interrupt.
EP = 0 : Exception/trap/interrupt processing is not in progress
EP = 1 : Exception/trap/interrupt processing is in progress
13 AE Address Trap Enable
Indicates whether address trap function is active
AE = 0 : Address trap function is not active
AE =1 : Address trap function is active
12 1D Interrupt Disable
Indicates whether external interrupt request can be accepted
ID =0 : Interrupt is enabled
ID =1 : Interrupt is disabled
11, 10 RFU Reserved field (fixed to 0)
9 FRO Floating Reserved Operand
Indicates whether reserved operand exception occurs during floating-point operation
FRO = 0: Reserved operand exception does not occur
FRO = 1: Reserved operand exception occurs
8 FIV Floating Invalid
Indicates whether invalid operation occurs during floating-point operation
FIV =0 : Invalid operation does not occur
FIV =1 : Invalid operation occurs
7 FzD Floating Zero Divide
Indicates whether zero division occurs during floating-point operation
FZD = 0: Zero division does not occur
FzZD = 1: Zero division occurs
6 FOV Floating OverFlow
Indicates whether overflow occurs during floating-point operation
FOV = 0: Overflow does not occur
FOV = 1: Overflow occurs
5 FUD Floating UnderFlow

Indicates whether underflow occurs during floating-point operation
FUD = 0: Underflow does not occur
FUD = 1: Underflow occurs

10

CHAPTER 2 REGISTER SET

Bit position Flag Meaning
4 FPR Floating Precision
Indicates whether degradation in precision occurs as result of floating-point operation
FPR = 0: Precision does not degrade
FPR = 1: Precision degrades
3 CcYy Carry
Indicates whether carry is generated as result of operation
CY =0 : Carry is not generated
CY =1 : Carry is generated
2 ov Overflow
Indicates whether overflow occurs during operation
OV =0 : Overflow does not occur
OV =1 : Overflow occurs
1 S Sign
Indicates whether result of operation is negative
S =0 : Result of operation is positive or zero
S =1 : Result of operation is negative
0 z Zero
Indicates whether result of operation is zero
Z =0 : Result of operation is not zero
Z =1 : Result of operation is zero

11

CHAPTER 2 REGISTER SET

2.2.5 Processor ID register (PIR)

The processor ID register is provided to identify the CPU type number of the V810 family. This register is
“0000810XH” in each device to indicate the V810 family.

No data can be written to this register by using the LDSR instruction.

31 16 15 1211 8 7 4 3 0
T P P P P
PIR RFU 1000|00O011(00O0 O| NECRV
8 "1 0
Bit position Field Meaning
31-16 RFU Reserved field (fixed to 0)
15-4 PT Processor Type: Field indicating type number of CPU
3-0 NECRV NEC reserved: Reserved by NEC

12

CHAPTER 2 REGISTER SET

2.2.6 Task control word (TKCW)

The task control word is a register that controls floating-point operations. This register is a read-only register.
No data can be written to this register by using the LDSR instruction.

Provided for future interchangeability, this register is currently fixed.

31 9876543210
T I
O|F|F|F|F|F[R
TKCW RFU T|I|{z|V|U|P|D| RD
MIT|[T|T|T|T|I
Bit position Field Meaning
31-9 RFU Reserved field (fixed to 0)
8 OTM Operand Trap Mask

Flag instructing whether trap occurs if reserved operand (indefinite and non-number) is found
during floating-point operation. With V810 family, this flag is fixed to O (trap occurs if reserved
operand is found)

7 FIT Floating Invalid Operation Trap Enable
Flag instructing whether trap occurs if invalid floating-point operation is executed. With V810
family, this flag is fixed to 1 (trap occurs if invalid operation is executed)

6 FZT Floating-Zero Divide Trap Enable
Flag instructing whether trap occurs if zero division occurs during floating-point operation. With
V810 family, this flag is fixed to 1 (trap occurs if zero division occurs)

5 FVT Floating-Overflow Trap Enable
Flag instructing whether trap occurs if overflow occurs during floating-point operation. With V810
family, this flag is fixed to 1 (trap occurs if overflow occurs)

4 FUT Floating-Underflow Trap Enable
Flag instructing whether trap occurs if underflow occurs during floating-point operation. With V810
family, this flag is fixed to O (trap does not occur even if underflow occurs)

3 FPT Floating-Precision Trap Enable
Flag instructing whether trap occurs if precision degrades as result of floating-point operation. With
V810 family, this flag is fixed to O (trap does not occurs even if precision degrades)

2 RDI Floating Rounding Control Bit for Integer Conversion

Flag instruction direction in which data is rounded when floating-point data is converted into integer
data. With V810 family, this flag is fixed to 0 (direction same as rounding direction specified by
RD field)

1,0 RD Floating Rounding Control
2-bit flag specifying direction in which data is rounded as result of floating point operation. With
V810 family, this flag is fixed to RD (1:0) = 00 (toward nearest)

13

CHAPTER 2 REGISTER SET

2.2.7 Cache control word (CHCW)

This register controls the internal instruction cache (128 entries [0 8 bytes = 1K bytes). A cache memory
becomes valid when an instruction next to the LDSR instruction has been fetched. ICR, ICD, ICE, and ICC must
be exclusively set to 1.

31 20 19 876543210
et I I
' Il Il
CHCW CEN SiA CEC RFU|C|C|RFU|C|C
. R|D E|C
Bit position Field Meaning
31-8 SA Spill-Out Base Address

Specifies higher 24 bits of first address of dump/restore area. Higher 24 bits of address of dump/
restore area are SA, and lower 8 bits are 0. This flag is always 0 when it is read.

31-20 CEN Clear Entry Number
Specifies start entry number when cache is cleared. Nothing is executed if CEN « 128. This flag
is always 0 when it is read.

19-8 CEC Clear Entry Count
Specifies number of entries when cache is cleared. Number of entries is automatically set to 128
if CEC > 128. This flag is always 0 when it is read.

7,6 RFU Reserved field (fixed to 0)

5 ICR Instruction Cache Restore
When this flag is set to 1, execution of restore is started"**. This flag is always 0 when it is read.
Operation is not guaranteed if this flag is set simultaneously with bit 4: ICD

4 ICD Instruction Cache Dump
When this flag is set to 1, execution of dump is started“°®. This flag is always 0 when it is read.
Operation is not guaranteed if this flag is set simultaneously with bit 5: ICR

3,2 RFU Reserved field (fixed to 0)

1 ICE Instruction Cache Enable
Instruction cache is enabled when this flag is 1"°¢2 and disabled when itis 0. Contents are saved
when instruction cache is disabled.

0 ICC Instruction Cache Clear

Instruction cache is cleared when this flag is set to 1N 1. This flag is always 0 when it is read.
Instruction cache is cleared starting from entry number specified by CEN by number of entries
specified by CEC. If (CEN + CEC > 128), instruction cache is cleared by (128 - CEN) entries.

Notes 1. An interrupt that occurs during restore/dump/clear operation is internally held and is accepted after the
operation in progress is finished. The maskable interrupt is held internally only when the EP, NP, and ID flags
of PSW are all 0.
2. To make the cache active, make the ICHEEN signal active, and set the ICE bit of the cache control word.

14

CHAPTER 2 REGISTER SET

2.2.8 Address trap register (ADTRE)
This 32-bit register holds a trap address (TA) that is used to detect address coincidence with the PC and to
generate an address trap. Bit O of this register is fixed to 0.

ADTRE

2.2.9 System register number
Data is input to or output from a system register by specifying the following system register number with the

system register load/store instruction (LDSR or STSR):

Operand specification
No System register
LDSR STSR

0 EIPC . Exception/Interrupt PC ° °

1 EIPSW : Exception/Interrupt PSW ° °

2 FEPC : Fatal Error PC ° °

3 FEPSW : Fatal Error PSW ° °

4 ECR . Exception Cause Register — °

5 PSW : Program Status Word ° °

6 PIR . Processor ID Register — °

7 TKCW : TasK Control Word — °
8-23 Reserved

24 CHCW : CacHe Control Word ° °

25 ADTRE : ADdress Trap Register for Execution ° °
26-31 | Reserved

Reserved : Operation is not guaranteed if this is accessed.

: Access disabled

: Access enabled (cannot be set in some cases)

15

CHAPTER 2 REGISTER SET

[MEMO]

16

CHAPTER 3 DATA TYPES

3.1 Data Types Supported
The data types supported by the V810 family are as follows:

e Integer (8, 16, 32 bits)

* Unsigned integer (8, 16, 32 bits)

e Bit string

» Single-precision floating-point data (32 bits)

17

CHAPTER 3 DATATYPES

3.1.1 Data type and addressing

18

Addressing of the V810 family is of little endian type. The format when data of fixed length exists in memory
is shown below.

1)

(2)

3)

Byte

A byte is a contiguous 8-bit data that starts from any byte boundary. Each bit is numbered from 0 to 7.
Bit 0 is the LSB (Least Significant Bit), and bit 7 is the MSB (Most Significant Bit). A byte is specified by
its address A.

Halfword

A halfword is a unit of contiguous 2-byte (16-bit) data that starts from any halfword boundary. Each bit
is numbered from 0 to 15. Bit O is the LSB (Least Significant Bit), and bit 15 is the MSB (Most Significant
Bit). A halfword is specified by its address A (with the lowest bit being 0), and takes two bytes: A and
A+1.

15 87 0

A+l A

Word/short real

Word/short real is a unit of contiguous 4-byte (32-bit) data that starts from any word boundary. Each bit
is numbered from 0 to 31. Bit O is the LSB (Least Significant Bit), and bit 31 is the MSB (Most Significant
Bit). Word/short real is specified by its address A (with the lower 2 bits being 0), and takes 4 bytes: A,
A+1, A+2, and A+3.

31 24 23 16 15 87 0

A+3 A+2 A+l A

CHAPTER 3 DATATYPES

3.1.2 Integer
With the V810 family, an integer is expressed as a binary number of 2's complement and can be 8, 16, or 32
bits long. The significance of each bit increases as the bit number increases, with bit 0 assigned with the least

significance.
Data length Range
Byte, 8 bits -128 to +127
Halfword, 16 bits -32768 to +32767
Word, 32 bits —2147483648 to +2147483647

3.1.3 Unsigned integer

The above integer is data that can take a positive or negative value. In contrast, an unsigned integer is an integer
that is not negative. An unsigned integer is also expressed as a binary number and can be 8, 16, or 32 bits long.
The significance of each bit increases as the bit number increases, with bit 0 assigned with the least significance,
regardless of the length. Note, however, that no sign bit exists.

Data length Range
Byte, 8 bits 0 to 255
Halfword, 16 bits 0 to 65535
Word, 32 bits 0 to 4294967295

3.1.4 Bit string
A bit string is a unit of data whose bit length is variable from 0 to 2%?-1. Bit string data is specified by the following
three attributes:

e First word address A of string data (lower 2 bits are 0)
« Bit offset B in word of string data (0 to 31)

e Bit length M of string data (0 to 2%-1)

With bit string data, the direction in which the address increases is called upward, and the direction in which
the address decreases is called downward.

19

CHAPTER 3 DATATYPES

M-1 0
M
I I I I I I I I I I
A+8 A+4 A (word boundary)
D
Attribute Upward manipulation Downward manipulation
First word address (bits 0 and 1 are 0) A A+4
Bit offset in word (0 to 31) B D
Bit length (from 0 to 2%-1) M M

3.1.5 Single-precision floating-point data

Data of this data type is 32 bits long and its representation format conforms to the single format of IEEE. Data
of this type consists of 1 mantissa sign bit, 8 bits of exponent (offset representation from bias value - 127), and

23 hits of mantissa (binary representation with integer omitted).

31 30 23 22

S exp (8)

mantissa (23)

3.2 Data Alignment

With the V810 family, word data must be aligned at the word boundary (with the lower 2 bits of the address
being 0), and half word data must be aligned at the halfword boundary (with the lower 1 bit of the address being
0). Unless aligned, the lower bit(s) (2 bits in the case of word data and 1 bit in the case of halfword data) is

automatically masked O for access.

20

CHAPTER 4 ADDRESS SPACE

The V810 family supports 4G bytes of linear memory space and I/O space. The CPU outputs 32-bit addresses
to the memory and I/Os; therefore, the addresses are from 0 to 2%2-1.

Bit number 0 of each byte data is defined as the LSB (Least Significant Bit), and bit number 7 is the MSB (Most
Significant Bit). Unless otherwise specified, the byte data at the lower address side of data consisting of two or
more bytes is the LSB, and the byte data at the higher address side is the MSB (little endian).

Data consisting of 2 bytes is called a halfword, and data consisting of 4 bytes is called a word. In this manual,
the lower address of memory or 1/O data of two or more bytes is shown on the right, and the higher address is
shown on the left, as follows:

By-te OF AOOIESS A +rrrrrrrrr ettt e

A (address)

15 8 7 0
HAIWOTD Of AOAIESS A «+-reereererrrrieireieiste ettt ettt

A+l A (address)

31 24 23 16 15 87 0
Word/short real of address A -,

A+3 A+2 A+l A

21

CHAPTER 4 ADDRESS SPACE

4.1 Memory and I/O Map
Fig. 4-1 shows the memory map of the V810 family.

Fig. 4-1 Memory Map

FFFFFFFFH
Interrupt handler tableNote
FFFFFEOOH
FFFFFDFFH
A= General use A=
00000000H
Note For details, refer to Table 6-1 Exception Codes.

22

CHAPTER 4 ADDRESS SPACE

Fig. 4-2 shows the I/O map of the V810 family.

FFFFFFFFH

00000000H

Fig. 4-2 1/0 Map

General use

23

CHAPTER 4 ADDRESS SPACE

4.2 Addressing Mode

Two types of addresses are generated for the V810 family — the instruction address used by instructions
performing branching and the operand address using instructions accessing data.

4.2.1 Instruction address

The instruction address is determined by the contents of the program counter (PC) and is automatically
incremented (+2) according to the byte number of the instruction fetched each time instructions are executed.
When branch instructions are executed, branch destination addresses are set in the PC by the following
addressing:

(1) Relative addressing (PC relative)
9 or 26 bit data (displacement: disp) encoded with instruction signs are added to the program counter
(PC). At this time, the displacement is taken as 2’s complement data, and bit 8 and bit 25 become sign
bits.
The Bcond disp9, JR disp26, and JAL disp26 instructions are used in this addressing.

Fig. 4-3 Relative Addressing (JR disp26/JAL disp26)

31 0
rrrrrrrrrr T

pPC 0

31 26 25 0
T T T rrrrrr T T T T T T T T T T T T T T T T T T T

Sign-extended disp26 0

31 0
T

PC 0

Manipulated memory

24

CHAPTER 4 ADDRESS SPACE

Fig. 4-4 Relative Addressing (Bcond disp9)

31 0
rrrr T

pPC 0

31 9 8 0
T T

Sign-extended S disp9 0

31 0
T

PC 0

Manipulated memory

25

CHAPTER 4 ADDRESS SPACE

(2) Register addressing (Register indirect)
Addressing which transfers the contents of the general registers (rO to r31) specified by instructions to
the program counter (PC).
The JMP [regl] instruction is used in this addressing.

Fig. 4-5 Register Addressing (JMP [regl])

31 0
1T 1T T 11T 11T 1T 17T 1T 1T 1T T 17T 1T T 17T T 17T T T 17T T T T T T
m PC 0
31 0
T
PC 0

Manipulated memory

26

CHAPTER 4 ADDRESS SPACE

4.2.2 Operand address
The following methods are available for accessing registers and memories used in the execution of instructions:

1)

(2)

3

Register addressing
Addressing which accesses, as operands, general registers specified by the general register specification
field. In this addressing, instructions with operand formats regl or reg2 are used.

Immediate addressing
Addressing which contains 5-bit data and 16-bit data for manipulation in their instruction codes. In this
addressing, instructions with operand formats imm5 or imm16 are used.

Based addressing

Addressing in which the contents of the general registers specified by the addressing specification code
in the instruction word and the 16-bit displacement add up to become the operand address in order to
address the memory for manipulation. In this addressing, instructions with operand format disp16 [reg1]

is used.
Fig. 4-6 Based Addressing
31 0
rrrrrrrrrrrrrrrrrrrr T
regl 0
31 16 15 0
Tl T T T T T T T T
Sign-extended disp16 0

Manipulated memory

27

CHAPTER 4 ADDRESS SPACE

[MEMO]

28

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

5.1 Instruction Format

The V810 family has two types of instruction formats: 16-bit and 32-bit formats. The 16-bitinstructions are binary
operation, control, and branch instructions, and the 32-bit instructions are load/store, I/O manipulation, 16-bit
immediate, jump and link, and extended instructions.

Some instructions have an unused field, which is reserved for future expansion and must be fixed to 0.

An instruction is actually stored in memory as follows:

e Lower part of each instruction (including bit 0) -> lower address side
e Higher part of each instruction (including bit 15 or 32) -> higher address side

(1) reg-reg instruction format (Format I)
An instruction in this format has a 6-bit op code field and two general-purpose register specification fields
to specify an operand. This format applies to a 16-bit instruction.

(2) imm-reg instruction format (Format Il)
An instruction in this format has a 6-bit op code field, a 5-bit immediate field, and a general-purpose
register specification field. This format applies to a 16-bit instruction.

15 109 54 0
e

opcode reg2 imm

(3) Conditional branch instruction format (Format IlI)
An instruction in this format has a 3-bit op code field, a 4-bit condition code, and a 9-bit branch
displacement field (the least significant bit is 0, however). This format applies to a 16-bit instruction.

15 1312 98 0
el

opcode| cond disp 0

29

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

30

(4) Middle-distance jump instruction format (Format V)
An instruction in this format is a middle-distance 32-bit branch instruction that has a 6-bit op code field
and a 26-bit displacement (the least significant bit is 0, however).
15 109 0 31 16
I T
opcode disp 0
(5) 3-operand instruction format (Format V)
An instruction in this format is a 32-bit instruction that has a 6-bit op code field, two general-purpose
register specification fields, and a 16-bit immediate field.
15 109 54 0 31 16
I T T T
opcode reg2 regl imm
(6) Load/store instruction format (Format VI)
An instruction in this format is a 32-bit instruction that has a 6-bit op code field, two general-purpose
register specification fields, and a 16-bit displacement.
15 10 9 5 4 0 31 16
I T T e
opcode reg2 regl disp
(7) Extended instruction format (Format VII)

An instruction in this format is a 32-bit instruction that has a 6-bit op code field, two general-purpose
register specification fields, and a 6-bit sub-op code field.

109 54

sub-opcode

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

5.2 Instruction Outline

(1) Load/store instructions
The load/store instructions transfer data from the memory to the register.

Table 5-1 Load/Store Instructions

Mnemonic Function
LD.B Load Byte
LD.H Load Halfword
LD.W Load Word
ST.B Store Byte
ST.H Store Halfword
ST.W Store Word

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(2) Integer arithmetic operation instructions
The integer arithmetic operation instructions perform addition, subtraction, multiplication, and division,
as well as data transfer, and data comparison between registers.

Table 5-2 Integer Arithmetic Operation Instructions

Mnemonic Function

MOV Move

MOVHI Add

ADD Add

ADDI Add

MOVEA Add

SuUB Subtract

MUL Multiply

MULU Multiply Unsigned
DIV Divide

DIVU Divide Unsigned
CMP Compare

SETF Set Flag Condition

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

3

Logical operation instructions

These instructions consist of the logical operation and shift instructions. The shift instructions consist

of the arithmetic shift and logical shift.

Several bits can be shifted in one clock using the barrel shifter.

Table 5-3 Logical Operation Instructions

Mnemonic Function
OR OR
ORI OR
AND AND
ANDI AND
XOR Exclusive-OR
XORI Exclusive-OR
NOT NOT
SHL Shift Logical Left
SHR Shift Logical Right
SAR Shift Arithmetic Right

33

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(4) 1/O instructions
The I/O instructions perform data transfer between I/O and registers.

Table 5-4 /O Instructions

Mnemonic Function
IN.B Input Byte
IN.H Input Halfword
IN.W Input Word

OuT.B Output Byte

OUT.H Output Halfword

OUT.W Output Word

34

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(5) Program control instructions (branch instructions)
The program control instructions consist of unconditional branch instructions and conditional branch
instructions which change the control according to the condition of the flag. The control of the program
can be shifted to an address specified by the program control instruction.

Table 5-5 Program Control Instructions

Mnemonic Function
JMP Jump
JR Jump Relative
JAL Jump and Link
BGT Branch on Greater than signed
BGE Branch on Greater than or Equal signed
BLT Branch on Less than signed
BLE Branch on Less than or Equal signed
BH Branch on Higher
BNH Branch on Not Higher
BL Branch on Lower
BNL Branch on Not Lower
BE Branch on Equal
BNE Branch on Not Equal
BV Branch on Overflow
BNV Branch on No Overflow
BN Branch on Negative
BP Branch on Positive
BC Branch on Carry
BNC Branch on No Carry
Bz Branch on Zero
BNz Branch on Not Zero
BR Branch Always
NOP No Branch (No Operation)

35

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(6) Bit string instructions
The bit string instructions perform bit search, transfer, and logical operation transfer for any bit length
in the memory space.

Table 5-6 Bit String Instructions

Mnemonic Function

SCHOBSU Search Bit 0 Upward

SCHOBSD Search Bit 0 Downward

SCH1BSU Search Bit 1 Upward

SCH1BSD Search Bit 1 Downward

MOVBSU Move Bit String Upward
NOTBSU NOT Bit String Upward
ANDBSU AND Bit String Upward

ANDNBSU AND Not Bit String Upward

ORBSU OR Bit String Upward
ORNBSU OR Not Bit String Upward
XORBSU Exclusive-OR Bit String Upward

XORNBSU Exclusive-OR Not Bit String Upward

CHAPTER 5

INSTRUCTION FORMAT AND INSTRUCTION SET

)

Floating-point operation instructions
The floating-point operation instruction performs the addition, subtraction, multiplication, and division of
single precision floating-point data (32 bits), comparisons, and mutual conversion of integer data and

floating-point data.

Table 5-7 Floating-Point Operation Instructions
Mnemonic Function

CMPF.S Compare Floating Short

CVT.WS Convert Word Integer to Short Floating
CVT.SW Convert Short Floating to Word Integer
ADDF.S Add Floating Short

SUBF.S Subtract Floating Short

MULF.S Multiply Floating Short

DIVF.S Divide Floating Short

TRNC.SW | Truncate Short Floating to Word Integer

37

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(8) Special instructions
This section lists the following special instructions, which are not included in the previous categories.

Table 5-8 Special Instructions

Mnemonic Function

LDSR Load System Register

STSR Store System Register

TRAP Trap

RETI Return from Trap or Interrupt
CAXI Compare and Exchange Interlocked
HALT Halt

38

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

5.3 Instruction Set

Example of instruction description

Mnemonic of instruction

Meaning of instruction

Instruction format

Indicates format in which the instruction is to be described, and the operand of the

instruction. The symbols used for operand description are as follows:

Symbol

Meaning

regl

General-purpose register (used as source register)

reg2

General-purpose register (mainly used as destination register.
Some registers are also used as source registers)

imm5

5-bit immediate

imm16

16-bit immediate

disp9

9-bit displacement

disp16

16-bit displacement

disp26

26-bit displacement

reglD

System register number

vector adr

Trap: Trap handler address corresponding to vector

Indicates the function of the instruction. The symbols used are as follows:

Meaning

Substitution

Bit connection

General-purpose register x

Operation
Symbol
<
I
GR [X]
SR [X]

System register x

sign-extend (x)

Extends sign of value x to word length

zero-extend(x)

Zero-extends value x to word length

converted (x)

Converts type of value x (rounding direction depends on TKCW)

truncate (x)

Converts type of value x (rounding direction is 0)

Load-Memory (X, y)

Reads data of size y from address x

Store-Memory (X, y, z)

Writes data y of size z to address x

Input-Port (x, y)

Reads data of size y from port address x

Output-Port (X, y, z)

Writes data y of size z to port address x

adr

32-bit unsigned address

39

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

40

Format

Op code

Flag

Instruction

Remarks

Supplement

Exception

Note

Indicates the symbol of the instruction format.

Indicates the op code of the instruction in the bit field. If the instruction has two or more
codes, part of the field may be described. “~" indicates a field other than the op code
field.

Indicates the operations of the flags.
CY - <- Not affected
OV 0 <- Affectedto 0

S 1 <- Affected to 1

Z —

If the instruction is a floating-point instruction, the operations of the flags dedicated to
floating-point data are also shown.

FRO -

FIV —

FZD -

FOV —

FUD —

FPR —

Indicates the function of the instruction.

Explains the operation of the instruction.

Provides supplemental information on the instruction.

Explains exceptions that may occur as a result of executing the instruction.

Explains points to be noted on the V810 family.

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

ADD

Add

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

)
2)

1)
2)

1)

2)

1)

)
cy
ov

S
Z

1)
2)

)

(2

ADD regl, reg2
ADD immb5, reg2

GR [reg2] <- GR [reg2] + GR [regl]
GR [reg2] <- GR [reg2] + sign-extend (immb5)

Format |
Format II

15 10 9 514 0
| 000001| reg2 | regl |

15 10 9 54 0
| 010001| reg2 | imm5|

1 if carry occurs from MSB; otherwise, 0
1 if Integer-Overflow occurs; otherwise, 0
1 if GR [reg?2] is negative; otherwise, 0

1 if GR [reg2] is 0; otherwise; 0

ADD Add Register
ADD Add Immediate (5-bit)

Adds the word data of general-purpose register regl and reg2, and stores the result
in general-purpose register reg2. The contents of general-purpose register regl

are not affected.

Adds the value sign-extended to word length from 5-bit immediate data to the word
data of general-purpose register reg2, and stores the result in general-purpose

register reg2.

None

41

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

ADDF.S

Add Floating Short

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

42

ADDEF.S regl, reg2

GR [reg2] <- GR [reg2] + GR [regl]

Format VII
15 109 54 031 2625 16
111110 | reg2 | regl | 000100 RFU

CY 1 if GR [reg2] is negative; otherwise, 0
ov 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [REG2] is 0O; otherwise, 0
FRO 1 if operand is denormal number, non-number (NaN), and indefinite;
otherwise, not affected
FIV -
FzD -
FOV 1 if result of operation is greater than maximum normalized number that
can be expressed; otherwise, not affected
FUD 1 if result of operation is less than minimum (absolute value) normalized
number that can be expressed; otherwise, not affected
FPR 1 if degradation in precision is detected; otherwise, not affected

ADDF.S Add Floating Short

Adds the single-precision floating-point data of general-purpose registers regl and
reg2, reflects the result on the flags, and stores the result into general-purpose register
reg2. Of the flags, the statuses of CY, OV, S, and Z are directly determined by the
execution result of this instruction. The other floating-point data flags are not affected
unless a given condition is satisfied, and hold the values determined before this
instruction has been executed.

The S flag has the same value as that of the CY flag.

If the single-precision floating-point data of general-purpose registers regl and reg2 are
equal in absolute value but different in sign, the sign of the result (zero) is determined
depending on the rounding mode. Because the rounding mode of the V810 family is
“Toward nearest”, the result is “positive zero”.

* Floating-point reserved operand exception
* Floating-point overflow exception

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

If the specified single-precision floating-point data is a denormal number, non-number,
or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO
flag is set, a trap occurs, and control is transferred to the exception processing handler.
In this case, general-purpose register reg2 and the other flags are not affected. If the
result of operation is greater than the maximum normalized number that can be
expressed, the floating-point overflow exception occurs. As a result, the FOV flag is set,
a trap occurs, and control is transferred to the exception processing handler. In this
case, the result of operation having a corrected exponent is stored to general-purpose
register reg2.

If the result of operation is less than the minimum (absolute value) normalized number
that is not zero and can be expressed, the FUD flag is set, but a trap does not occur
and control is not transferred to the exception processing handler. In this case, zero
is stored to general-purpose register reg2.

If degradation in precision occurs as a result of rounding after conversion, the FPR flag
is set, but control is not trapped to the exception processing handler. In this case, the
result of operation having the rounded mantissa is stored to general-purpose register
reg2.

43

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

44

ADDI

Add Immediate

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

ADDI imm16, regl, reg2
GR [reg2] <- GR [regl] + sign-extend (imm16)
Format V

15 10 9 54 031 16
| 101001| reg2 | regl | imm16

CY 1 if carry occurs from MSB; otherwise, 0
OV 1 if Integer-Overflow occurs; otherwise, 0
S 1if GR [reg2] is negative; otherwise, 0

Z 1if GR [reg2] is O; otherwise; 0

ADDI Add Immediate (16-bit)
Adds the value sign-extended from 16-bit immediate data to word length and the word
data of general-purpose register regl, and stores the result in general-purpose register

reg2. The contents of general-purpose register regl are not affected.

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

AN D And
Instruction format AND reg1l, reg2
Operation GR [reg2] <- GR [reg2] AND GR [regl]
Format Format |
Op code 15 10 9 54 0

001101| reg2 | regl |

Flag cYy -
ov 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0

Instruction AND And
Remarks ANDs the word data of general-purpose register reg2 with the word data of general-
purpose register regl, and stores the result in general-purpose register reg2. The

contents of general-purpose register regl are not affected.

Exception None

45

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

ANDBSU

And Bit String Upward

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Supplement

Exception

46

ANDBSU
destination <- destination AND source
Format Il

15 109 54 0
011111 | reg2 |01001 |

cy -
ov -
s -
zZ -

ANDBSU And Bit String Upward

ANDs the source bit string specified by general-purpose registers r30 (source word
address), r27 (bit offset in source word), and r28 (string length) with the destination bit
string specified by general-purpose registers r29 (destination word address) and r26 (bit

offset in destination word), and transfers the result to the destination bit string. Transfer

is carried out from the lower address (first address) toward the higher address (end

address).

General-purpose registers r26 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use
r26 Bit offset in destination word
r27 Bit offset in source word
r28 String length
r29 Destination word address
r30 Source word address

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

ANDI

And Immediate

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

ANDI imm16, regl, reg2

GR [reg2] <- GR [regl] AND zero-extend (imm16)

Format V
15 10 9 54 031 16
|101101| reg2 | regl | imm16
cYy -
oV 0
S O

Z 1if GR [reg2] is O; otherwise, 0
ANDI And Immediate (16-bit)
ANDs the word data of general-purpose register regl with the value zero-extended from
the 16-bit immediate data to word length, and stores the result in general-purpose

register reg2. The contents of general-purpose register regl are not affected.

None

47

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

ANDNBSU

And Not Bit String Upward

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Supplement

Exception

48

ANDNBSU
destination <- destination AND (NOT source)
Format Il

15 109 54 0
011111 | reg2 |01101 |

Ccy -
ov -
s -
zZ -

ANDNBSU And Not Bit String Upward

NOTs the source bit string specified by general-purpose registers r30 (source word
address), r27 (bit offset in source word), and r28 (string length), ANDs the result with
the destination bit string specified by general-purpose registers r29 (destination word
address) and r26 (bit offset in destination word), and transfers the result of the AND to
the destination bit string. Transfer is carried out from the lower address (first address)
toward the higher address (end address).

General-purpose registers r26 through r30 are assigned as the work registers of the bit
string instruction and hold information necessary for aborting and resuming the instruction
while the instruction is executed.

General-purpose register Use
r26 Bit offset in destination word
r27 Bit offset in source word
r28 String length
r29 Destination word address
r30 Source word address

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Bcond

Branch on Condition

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

Bcond disp9

if condition are satisfied
then PC <- PC + (sign-extend) disp9

Format Il
15 98 0

| 100$$$$ | disp9 0]
$$$$ field indicates a condition (refer to Table 5-9).

cy -
ov -
s -
zZ -

Bcond Branch on Condition Code with 9-bit displacement

Tests the condition flag specified by the instruction. If the condition is satisfied, sets
the value resulting from adding the current PC contents and the value sign-extended
from 9-bit displacement to word length to the PC and transfers control. Bit O of the 9-
bit displacement is masked with 0. The current PC contents used for the calculation
isthe address of the first byte of the Bcond instruction itself; therefore, if the displacement
value is 0, the branch destination is this instruction itself.

None

49

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

50

Table 5-9 Conditional Branch Instructions

Instruction Condition code Condition flag status Branch condition
Integer BGT 1111 ((SxorOV)orz)=0 Greater than signed
BGE 1110 (SxoroVv)=0 Greater than or equal signed
BLT 0110 (Sxorov)=1 Less than signed
BLE 0111 ((SxorOV)orz)=1 Less than or equal signed
Unsigned | BH 1011 (Cyorz)y=0 Higher (Greater than)
integer BNL 1001 CY=0 Not lower (Greater than or equal)
BL 0001 Cy=1 Lower (Less than)
BNH 0011 (CYorz)y=1 Not higher (Less than or equal)
Common | BE 0010 = Equal
BNE 1010 =0 Not equal
Others BV 0000 ov=1 Overflow
BNV 1000 ov=0 No overflow
BN 0100 S=1 Negative
BP 1100 S=0 Positive
BC 0001 Cy=1 Carry
BNC 1001 CY =0 No carry
Bz 0010 Z= Zero
BNz 1010 Z=0 Not zero
BR 0101 - Always (unconditional)
NOP 1101 - Not Always (does not branch)

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Compare and Exchange Interlocked

CAXI

Instruction format CAXI disp16 [regl], reg2

Operation locked
adr <- GR [regl] + (sign-extend) disp16
tmp <- Load-Memory (adr, Word)
if GR [reg2] = tmp (compare; result <- GR [reg2] — tmp)
then Store-Memory (adr, GR [30], Word)
GR [reg2] <- tmp
else Store-Memory (adr, tmp, Word)
GR [reg2] <- tmp

unlocked
Format Format VI
Op code 15 10 9 54 031 16
| 111010 | reg2 | imm5 | displ6
Flag CY 1 if borrow occurs from MSB as result of comparison; otherwise, 0

OV 1 if Integer-Overflow occurs as result of comparison; otherwise, 0
S 1 if result of comparison is negative; otherwise, 0
Z 1 if result of comparison is 0; otherwise, 0

Instruction CAXI Compare and Exchange Interlocked
Remarks This instruction is to synchronize processors in a multi-processor system, and the data

specified by disp16 [regl] is to establish synchronization (for example, lock word).
The status before this instruction is executed is as follows:

New lock word to be set GR [30]
Lock word previously read GR [reg2]
Lock word Word data of address specified by GR [regl]

+ (sign-extend) disp16. Bits 0 and 1 of address are
masked with 0

In this status, the CAXI instruction performs the following operations:

(1) Locks the bus to prevent the other processor from accessing the bus.

(2) Fetches the lock word.

(3) Compares the value of the fetched lock word with the value of the previously read
lock word, and reflects the result of comparison on flags.

(4) If both the lock words coincide, it means that the status has not been changed from
the status in which previous access was made (the program of the other processor
is not locked for accessing). Since the status is changed as a result of executing
this CAXI instruction, set a new lock word to be set (GR [30]).

51

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Exception

52

(5) If both the lock words do not coincide, it means that the status has been changed
(the program of the other processor is locked for accessing). To check the status
of the lock word, set that lock word to GR [reg2].

(6) Releases the bus lock.

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

CMP

Compare

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

)
(2

1)
(2

1)

(2

1)

(2

CYy
ov

1)
2)

)

(2

CMP regl, reg2
CMP immb5, reg2

result <- GR [reg2] — GR [regl]
result <- GR [reg2] — sign-extend (immb5)

Format |
Format Il

15 109 54 0
| 000011 | reg2 | regl |

15 109 54 0
| 010011 | reg2 | imms |

1 if borrow occurs from MSB; otherwise, 0
1 if Integer-Overflow occurs; otherwise, 0
1 if result is negative; otherwise, 0

1 if result is O; otherwise, O

CMP Compare Register
CMP Compare Immediate (5-bit)

Compares the word data of general-purpose register reg2 with the word data of
general-purpose register regl, and indicates the result to the condition flag. The
comparison is made by subtracting the contents of general-purpose register regl
from the word data of general-purpose register reg2. The contents of general-
purpose registers regl and reg2 are not affected.

Compares the word data of general-purpose register reg2 with the value sign-
extended from the 5-bit immediate data to word length, and indicates the result to
the condition flag. The comparison is made by subtracting the value sign-extended
from the 5-bit immediate data to word length from the word data of general-purpose
register reg2. The contents of general-purpose register reg2 are not affected.

None

53

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

CMPFE.S

Compare Floating Short

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

54

CMPF.S regl, reg2

result <- GR [reg2] —-GR [regl]

Format VII
15 109 54 031 2625 16
| 111110 | reg2 | regl | 000000 | RFU

CY 1 if result of operation is negative; otherwise, 0
ov 0
S 1 if result of operation is negative; otherwise, 0
Z 1 if result of operation is 0; otherwise, 0
FRO 1 if operand is denormal number, non-number (NaN), and indefinite;
otherwise, not affected
FIV -
FzD -
FOvV -
FUD -
FPR -

CMPF.S Compare Floating Short

Compares the single-precision floating-point data of general-purpose registers regl and
reg2, and indicates the result with the flags. The comparison s carried out by subtracting
the floating-point data of general-purpose register regl from the floating-point data of
general-purpose register reg2. The contents of both the general-purpose registers are
not affected. Of the flags, the statuses of CY, OV, S, and Z are directly determined by
the execution result of this instruction. The other floating-point data flags are not
affected unless a given condition is satisfied, and hold the values determined before this
instruction has been executed.

The S flag has the same value as the CY flag.

* Floating-point reserved operand exception

If the specified single-precision floating-point data is a denormal number, non-number,
or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO

flag is set, a trap occurs, and control is transferred to the exception processing handler.
In this case, the other flags are not affected.

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

CVT.SW

Convert Short Floating to Word Integer

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

CVT.SW regl, reg2

GR [reg2] <- convert (GR [regl])

Format Vi
15 109 54 031 2625 16
| 111110 | reg2 | regl | 000011| RFU

cy -

oV 0

S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0
FRO 1 if GR [reg2] is denormal number, non-number (NaN), and indefinite;
otherwise, not affected
FIV 1 if invalid operation occurs; otherwise, not affected
FzD -
FOvV -
FUD -
FPR 1 if degradation in precision is detected; otherwise, not affected

CVT.SW Convert Short Floating to Word Integer

Converts the single-precision floating-point data of general-purpose register regl into
integer data, indicates the result with the flags, and stores the result to general-purpose
register reg2. Of the flags, the statuses of CY, OV, S, and Z are directly determined
by the execution result of this instruction. The other floating-point data flags are not
affected unless a given condition is satisfied, and hold the values determined before this
instruction has been executed.

« Floating-point reserved operand exception
* Floating-point invalid operation exception

55

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

56

If the specified single-precision floating-point data is a denormal number, non-number,
or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO
flag is set, a trap occurs, and control is transferred to the exception processing handler.
In this case, general-purpose register reg2 and the other flags are not affected.

If the result of operation is a word-length integer and cannot be expressed in a given
range, the invalid floating-point operation exception occurs. As a result, the FIV flag
is set, a trap occurs, and control is transferred to the exception processing handler. In
this case, general-purpose register reg2 and the other flags are not affected.

If degradation in precision occurs as a result of rounding after conversion, the FPR flag
is set, but control is not trapped to the exception processing handler. In this case, the
result of operation having the rounded mantissa is stored to general-purpose register
reg2.

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Convert Word Integer to Short Floating

CVT.WS

Instruction format CVT.WS regl, reg2

Operation GR [reg2] <- convert (GR [regl])

Format Format VIl

Op code 15 10 9 54 0 31 26 25 16
| 111110 | reg2 | regl | 000010 | RFU

Flag CY 1 if GR [reg2] is negative; otherwise, 0
ov 0

S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [REG2] is 0O; otherwise, 0
FRO -
FIV. -
FzD -
FOvV -
FUD -
FPR 1 if degradation in precision is detected; otherwise, not affected

Instruction CVT.WS Convert Word Integer to Short Floating

Remarks Converts the integer data of general-purpose register regl into single-precision floating-
point data, indicates the result with the flags, and stores the result in general-purpose
register reg2. Of the flags, the statuses of CY, OV, S, and Z are directly determined
by the result of executing this instruction. The other floating-point data flags are not
affected unless a given condition is satisfied, and hold the values determined before this
instruction has been executed.

The S flag has the same value as the CY flag.

Exception None
Note If degradation in precision occurs as a result of rounding after conversion, the FPR flag

is set, but control is not trapped to the exception processing handler. In this case, the
result of operation having the rounded mantissa is stored to general-purpose register
reg2.

57

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

58

DIV

Divide

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

DIV regl, reg2

GR [30] <- GR [reg2] MOD GR [regl] (signed)
GR [reg2] <- GR [reg2] + GR [regl] (signed)

Format |

15 109 54 0
001001 | reg2 | regl |

cYy -

OV 1 if Integer-Overflow occurs; otherwise, 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise; 0

DIV Divide

Divides the word data of general-purpose register reg2 by the word data of general-
purpose register regl (signed), and stores the quotient in general-purpose register reg2
and the remainder in general-purpose register r30, respectively. Division is carried out
so that the sign of the remainder matches the sign of the dividend. The contents of
general-purpose register 1 are not affected. An overflow is set if the maximum value
(800O0000O0H) is divided by —1 (FFFFFFFFH). Atthistime, the negative maximum value
is stored in general-purpose register reg2, and 0O is stored in general-purpose register
r30.

Zero division exception

If the word data of general-purpose register regl is zero, a zero division exception
occurs, a trap occurs, and control is transferred to the exception processing handler.
In this case, the contents of general-purpose register reg2, general-purpose register
r30, and flags are not affected.

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

DIVE.S

Divide Floating Short

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

DIVF.S regl, reg2

GR [reg2] <- GR [reg2] + GR [regl]

Format VII
15 109 54 031 2625 16
| 111110 | reg2 | regl | 000111 | RFU

CY 1 if GR [reg2] is negative; otherwise, 0
ov 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0
FRO 1 if operand is denormal number, non-number (NaN), and indefinite;
otherwise, not affected
FIV 1 if invalid operation occurs; otherwise, not affected
FzZD 1 if zero division occurs; otherwise, not affected
FOV 1 if result of operation is greater than maximum normalized number that
can be expressed; otherwise, not affected
FUD 1 if result of operation is less than minimum (absolute value) normalized
number that can be expressed; otherwise, not affected
FPR 1 if degradation in precision is detected; otherwise, not affected

DIVF.S Divide Floating Short

Divides the single-precision floating-point data of general-purpose register reg2 by the
single-precision floating-point data of general-purpose register reg1, reflects the result
on the flags, and stores the result to general-purpose register reg2. Of the flags, the
statuses of CY, OV, S, and Z are directly determined by the result of executing this
instruction. The other floating-point data flags are not affected unless a given condition
is satisfied, and hold the values determined before this instruction has been executed.

The S flag has the same value as that of the CY flag.

If the single-precision floating-point data of general-purpose register reg2 is zero, and
if the single-precision floating-point data of general-purpose register reg1is not zero and
denormalized number, the result of operation is zero.

The sign of the operation result is determined through exclusive OR between the sign
fields of the single-precision floating-point data of general-purpose registers regl and
reg2.

* Floating-point reserved operand exception
« Floating-point invalid operation exception
* Floating-point zero division exception

* Floating-point overflow exception

59

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

60

If the specified single-precision floating-point data is a denormal number, non-number,
or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO
flag is set, a trap occurs, and control is transferred to the exception processing handler.
In this case, general-purpose register reg2 and the other flags are not affected.

If both the specified single-precision floating-point data are zero, the floating-point
invalid operation exception occurs. As a result, the FIV flag is set, a trap occurs, and
control is transferred to the exception processing handler. Inthis case, general-purpose
register reg2 and the other flags are not affected.

If the single-precision floating-point data of general-purpose register regl is zero and
the single-precision floating-point data of general-purpose register reg2 is a normalized
number, the floating-point zero division exception occurs. As a result, the FZD flag is
set, atrap occurs, and control is transferred to the exception processing handler. In this
case, general-purpose register reg2 and the other flags are not affected.

If the result of operation is greater than the maximum normalized number that can be
expressed, the floating-point overflow exception occurs. As aresult, the FOV flag is set,
a trap occurs, and control is transferred to the exception processing handler. In this
case, the result of operation having a corrected exponent is stored to general-purpose
register reg2.

If the result of operation is less than the minimum (absolute value) normalized number
that is not zero and can be expressed, the FUD flag is set, but a trap does not occur
and controlis not transferred to the exception processing handler. Inthis case, denormal
number is stored to general-purpose register reg2.

If degradation in precision occurs as a result of rounding after conversion, the FPR flag
is set, but control is not trapped to the exception processing handler. In this case, the
result of operation having the rounded mantissa is stored to general-purpose register
reg2.

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

DIVU

Divide Unsigned

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

DIVU regl, reg2

GR [30] <- GR [reg2] MOD GR [regl] (unsigned)
GR [reg2] <- GR [reg2] + GR [regl] (unsigned)

Format |

15 10 9 54 0
001011 | reg2 | regl |

cYy -

ov 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0

DIVU Divide Unsigned

Divides the word data of general-purpose register reg2 by the word data of general-
purpose register regl (signed) as unsigned data, and stores the quotient in general-
purpose register reg2 and the remainder in general-purpose register r30, respectively.
The contents of general-purpose register regl are not affected. If r30 is specified as
general-purpose register reg2, the quotient is stored in general-purpose register r30.
The flags are set as if the result were signed data.

Zero division exception
If the word data of general-purpose register regl is zero, a zero division exception
occurs, a trap occurs, and control is transferred to the exception processing handler.

In this case, the contents of general-purpose register reg2, general-purpose register
r30, and flags are not affected.

61

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

HALT

Halt

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

Supplement

62

HALT

Halt

Format Il

15 10 9 54 0

011010 | reg2 | imm5 |

cy -
ov -
S —
Z —
HALT Halt
Halts the processor.

None

If an interrupt is accepted in the HALT status set by the HALT instruction, the address
of the instruction next to the HALT instruction is stored in the EIPC or FEPC.

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

IN

Input From Port

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

)
2)
3)
1)
2)

3)

1)

15

IN.B disp16 [regl], reg2
IN.H disp16 [regl], reg2
IN.W disp16 [regl], reg2

adr <- GR [regl] + (sign-extend) displ6
GR [reg2] <=2“™ |nput-Port (adr, Byte)
adr <- GR [regl] + (sign-extend) displ6
GR [reg2] <= |nput-Port (adr, Halfword)
adr <- GR [regl] + (sign-extend) displ6

GR [reg2] ¢——— Input-Port (adr, Word)

Format VI

10 9 54 031 16

| 1110*$| reg2 | regl | disp16

(*$:
CY
ov

S
4

(€]
(2
3)

)

2)

3)

00 = (1), 01 = (2), 11 = (3))

IN.B Input Byte from Port
IN.H Input Halfword from Port
IN.W Input Word from Port

Adds the data of general-purpose register regl and the value sign-extended from
the 16-bit displacement to word length to generate an unsigned 32-bit port address.
From this port address, byte data is read, zero-extended to word length, and stored
in general-purpose register reg2.

Adds the data of general-purpose register regl and the 16-bit displacement sign-
extended to word length to generate an unsigned 32-bit port address. From this
port address, halfword data is read, zero-extended to word length, and stored in
general-purpose register reg2. Bit 0 of the unsigned 32-bit address is masked with
0.

Adds the data of general-purpose register regl and the value sign-extended from
the 16-bit displacement to word length to generate an unsigned 32-bit port address.
From this port address, word data is read and stored in general-purpose register
reg2. Bits 0 and 1 of the unsigned 32-bit address are masked with 0.

None

63

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

64

JAL

Jump and Link

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

JAL disp26

GR[31] <-PC + 4
PC <- PC + (sign-extend) disp26

Format IV

15 10 9 16

| 101011 | disp26 0

cy -
ov -
s -
zZ -

JAL Jump and Link

Saves the value resulting from adding 4 to the current PC contents into the general-
purpose register r31, sets the value resulting from adding the current PC contents to
the value sign-extended from the 26-bit displacement to word length to the PC, and
transfers control. Bit 0 of the 26-bit displacement is masked with 0. The current PC
contents used for the calculation is the address of the first byte of the JAL instruction
itself; therefore, if the displacement value is 0, the branch destination is this instruction
itself.

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

JMP

Jump register

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

JMP [regl]
PC <- GR [regl]
Format |

15 109 54 0
000110 | reg2 | regl |

Ccy -
ov -
s -
zZ -

JMP Jump register

Transfers control to the address specified by general-purpose register regl. Bit 0 of the

address is masked with 0.

None

65

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

JR

66

Jump Relative

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

JR disp26

PC <- PC + (sign-extend) disp26

Format IV
15 109 16
| 101010 | disp26 0
cy -
ov -

S —

Z —

JR Jump Relative

Sets the value resulting from adding the current PC contents to the value sign-extended
from the 26-bit displacement to word length to the PC and transfers control. Bit O of the
26-bit displacement is masked with 0.

The current PC contents used for the calculation is the address of the first byte of the
JMP instruction itself; therefore, if the displacement value is 0, the branch destination
is this instruction itself.

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

LD

Load

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

)
(2
3)
1)
2)

3)

LD.B disp16[regl], reg2
LD.H displ16[regl], reg2
LD.W disp16[regl], reg2

addr <- GR [regl] + (sign-extend) disp16

GR [reg2] fnexend | gad-Memory (adr, Byte)

adr <- GR [regl] + (sign-extend) displ6

GR [reg2] <222 | pad-Memory (adr, Halfword)
adr <- GR [regl] + (sign-extend) disp16

GR [reg2] «—— Load-Memory (adr, Word)

Format VI

15

10 9 54 0 31 16

| 1100*$| reg2 | regl | disp16

(*$:

CY
oV
S
z

1)
(2
3)

)

2)

3)

00 = (1), 01 = (2), 11 = (3))

LD.B Load Byte
LD.H Load Halfword
LD.W Load Word

Adds the data of general-purpose register regl and the displacement sign-extended
from 16 bits to word length to generate a 32-bit unsigned address. From the
generated address, byte data is read, which is then sign-extended to word length
and is stored in general-purpose register reg2.

Adds the data of general-purpose register regl and the displacement sign-extended
from 16 bits to word length to generate a 32-bit unsigned address. From the
generated address, halfword data is read, which is then sign-extended to word
length, and is stored in general-purpose register reg2. Bit 0 of the 32-bit unsigned
address is masked with 0.

Adds the data of general-purpose register reg1l and the displacement sign-extended
from 16 bits to word length to generate a 32-bit unsigned address. From the
generated address, word data is read, and stored in general-purpose register reg2.
Bits 0 and 1 of the 32-bit unsigned address are masked with 0.

None

67

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

LDSR

Load to System Register

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

68

LDSR reg2, reglD

SR [reglID] <- GR [reg2]

Format Il

15 10 9 54 0

011100| reg2 | imm5 |

CY - (Refer to Supplement below.)
OV - (Refer to Supplement below.)
S — (Refer to Supplement below.)
Z - (Refer to Supplement below.)

LDSR Load to System Register

Sets the word data of general-purpose register reg2 to a system register specified by
the system register number (reglD). The contents of general purpose register reg2 is
not affected. The system register number is a number to identify a system register. If
the LDSR instruction is executed to a reserved system register or write-disabled system
register, the operation is not guaranteed.

None

If the system register number (regID) is 5 (PSW), the value of the corresponding bit of
general-purpose register reg2 is set to each flag of the PSW.

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

MOV Move

Instruction format (1) MOV regl, reg2
(2) MOV immb5, reg2

Operation (1) GR [reg2] <- GR [regl]
(2) GR [reg2] <- sign-extend (immb5)

Format (1) Format |
(2) Format Il
Op code 15 10 9 514 0

(1) | 000000 | reg2 | regl |

15 10 9 54 0
(2) | 010000 | reg2 | imms |

Flag CYy -
oV -
S —
7 —
Instruction (1) MOV Move Register

(2) MOV Move Immediate (5-bit)

Remarks (1) Copies and transfers the word data of general-purpose register regl to general-
purpose register reg2. The contents of general-purpose register regl are not
affected.

(2) Copies and transfers the value sign-extended from 5-bit immediate data to word
length to general-purpose register reg2.

Exception None

69

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

MOVBSU

Move Bit String Upward

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Supplement

Exception

70

MOVBSU

destination <- source

Format Il

15 10 9 54 0

011111 | reg2 | 01011 |

cy -
ov -
s -
zZ -

MOVBSU Move Bit String Upward

Transfers the source bit string specified by general-purpose registers r30 (source word
address), r27 (bit offset in source word), and r28 (string length) to the position specified
by general-purpose registers r29 (destination word address) and r26 (bit offset in
destination word). Transfer is carried out from the lower address (first address) toward
the higher address (end address).

General-purpose registers r26 through r30 are assigned as the work registers of the bit
string instruction and hold information necessary for aborting and resuming the instruction
while the instruction is executed.

General-purpose register Use
r26 Bit offset in destination word
r27 Bit offset in source word
r28 String length
r29 Destination word address
r30 Source word address

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

MOVEA

Add

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

MOVEA imm16, regl, reg2
GR [reg2] <- GR [regl] + sign-extend (imm16)
Format V

15 10 9 54 031 16
|101000| reg2 | regl | imm16

Ccy -
ov -
s -
zZ -

MOVEA Add Immediate (16-bit)

Adds the value sign-extended from 16-bit immediate data to word length and the word
data of general-purpose register regl, and stores the result in general-purpose register
reg2. The contents of general-purpose register regl are not affected. Neither are the

flags affected.

None

71

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

72

MOVHI

Add

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

MOVHI imm16, regl, reg2

GR [reg2] <- GR [regl] + (imm16 || 0)

Format V
15 109 54 031 16
| 101111 | reg2 | regl | imm16
cY -
oV -
S —
Z —
MOVHI Add

Adds word data whose higher 16 bits are immediate data and lower 16 bits are all 0 and
the word data of general-purpose register regl, and stores the result of the addition in
general-purpose register reg2. The contents of general-purpose register regl are not
affected. Neither are the flags affected.

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

MUL

Multiply

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

MUL regl, reg2

result <- GR [reg2] O GR [regl] (signed)
GR [30] <- result (higher 32 bhits)

GR [reg2] <- result (lower 32 bits)

Format |

15 10 9 54 0
001000| reg2 | regl |

cYy -

OV 1 if Integer-Overflow occurs; otherwise, 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise; O

MUL Multiply

Multiplies the word data of general-purpose register reg2 by the word data of general-
purpose register regl (signed), and stores the higher 32 bits of the result (double word

length) in general-purpose register r30, and the lower 32 bits in general-purpose register
regl are not affected. Ifr30 is specified as general-purpose register reg2, the lower 32
bits of the result are stored inr30. An overflow is set if the result of the doubleword length

is not equal to the value sign-extended from the lower 32 bits to doubleword length.

None

73

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

MULF.S

Multiply Floating Short

Instruction format

Operation

Format

Op code

74

Flag

Instruction

Remarks

Exception

MULF.S regl, reg2

GR [reg2] <- GR [reg2] O GR [reg1l]

Format VII
15 109 54 031 2625 16
| 1111120 | reg2 | regl | 000110 | RFU

CY 1 if GR [reg2] is negative; otherwise, 0
ov 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0
FRO 1 if operand is denormal number, non-number (NaN), and indefinite;
otherwise, not affected
FIV -
FzD -
FOV 1 if result of operation is greater than maximum normalized number that
can be expressed; otherwise, not affected
FUD 1 if result of operation is less than minimum (absolute value) normalized
number that can be expressed; otherwise, not affected
FPR 1 if degradation in precision is detected; otherwise, not affected

MULF.S Multiply Floating Short

Multiplies the single-precision floating-point data of general-purpose register reg1 by the
single-precision floating-point data of general-purpose register reg2, reflects the result
on the flags, and stores the result to general-purpose register reg2. Of the flags, the
statuses of CY, OV, S, and Z are directly determined by the result of executing this
instruction. The other floating-point data flags are not affected unless a given condition
is satisfied, and hold the values determined before this instruction has been executed.

The S flag has the same value as that of the CY flag.

If one of the two single-precision floating-point data is zero and the other is zero or a
normalized number, the result of operation is zero.

The sign of the operation result is determined through exclusive OR between the sign
fields of the single-precision floating-point data of general-purpose registers regl and
reg2.

* Floating-point reserved operand exception
« Floating-point overflow exception

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

If the specified single-precision floating-point data is a denormal number, non-number,
or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO
flag is set, a trap occurs, and control is transferred to the exception processing handler.
In this case, general-purpose register reg2 and the other flags are not affected.

If the result operation is greater than the maximum normalized number that can be
expressed, the floating-point overflow exception occurs. As aresult, the FOV flag is set,
a trap occurs, and control is transferred to the exception processing handler. In this
case, the result of operation having a corrected exponent is stored to general-purpose
register reg2.

If the result of operation is less than the minimum (absolute value) normalized number
that is not zero and can be expressed, the FUD flag is set, but a trap does not occur
and control is not transferred to the exception processing handler. In this case, zero
is stored to general-purpose register reg2.

If degradation in precision occurs as a result of rounding after conversion, the FPR flag
is set, but control is not trapped to the exception processing handler. In this case, the
result of operation having the rounded mantissa is stored to general-purpose register
reg2.

75

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Multiply Unsigned

MULU

Instruction format MULU regl, reg2

Operation result <- GR [reg2] O GR [regl] (unsigned)
GR [30] <- result (higher 32 bhits)
GR [reg2] <- result (lower 32 hits)

Format Format |
Op code 15 10 9 54 0

001010| reg2 | regl |

Flag Cy -
OV 1 if Integer-Overflow occurs; otherwise, 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise; 0

Instruction MULU Multiply Unsigned

Remarks Multiplies the word data of general-purpose register reg2 by the word data of general-
purpose register regl as unsigned data, and stores the higher 32 bits of the result
(doubleword length) in general-purpose register r30, and the lower 32 bits in general-
purpose register reg2, respectively. The contents of general-purpose register regl are
not affected. If r30 is specified as general-purpose register reg2, the lower 32 bits of
the result are stored in r30. An overflow is set if the result of the doubleword length is
not equal to the value zero-extended from the lower 32 bits to doubleword length.

Exception None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

NOT

Not

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

NOT regl, reg2
GR [reg2] <- NOT (GR [reg1l])
Format |

15 10 9 54 0
001111 | reg2 | regl |

cy -

oV 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0

NOT Not

Negates (1's complement) the word data of general-purpose register regl and stores

the result in general-purpose register reg2. The contents of general-purpose register

regl are not affected.

None

77

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

NOTBSU

Not Bit String Upward

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Supplement

Exception

78

NOTBSU

destination <- NOT (source)

Format Il

15 10 9 54 0

011111 | reg2 | 01111 |

Ccy -
ov -
s -
zZ -

NOTBSU Not Bit String Upward

Logically negates the source bit string specified by general-purpose registers r30
(source word address), r27 (bit offset in source word), and r28 (string length) (inverts
1sand0s), and transfers the result to the position specified by general-purpose registers
r29 (destination word address) and r26 (bit offset in destination word). Transfer is
carried out from the lower address (first address) toward the higher address (end
address).

General-purpose registers r26 through r30 are assigned as the work registers of the bit
string instruction and hold information necessary for aborting and resuming the instruction
while the instruction is executed.

General-purpose register Use
r26 Bit offset in destination word
r27 Bit offset in source word
r28 String length
r29 Destination word address
r30 Source word address

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

OR Or

Instruction format OR regl, reg2

Operation GR [reg2] <- GR [reg2] OR GR [regl]
Format Format |

Op code 15 10 9 54 0

001100| reg2 | regl |

Flag cy -
ov 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0

Instruction OR Or
Remarks ORs the word data of general-purpose register reg2 with the word data of general-
purpose register regl, and stores the result in general-purpose register reg2. The

contents of general-purpose register regl are not affected.

Exception None

79

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

ORBSU

Or Bit String Upward

Instruction format

Operation

Format

Op code

Flag

80

Instruction

Remarks

Supplement

Exception

ORBSU
destination <- destination OR source
Format Il

15 109 54 0
011111 | reg2 | 01000 |

Ccy -
ov -
s -
zZ -

ORBSU Or Bit String Upward

ORs the source bhit string specified by general-purpose registers r30 (source word
address), r27 (bit offset in source word), and r28 (string length) with the destination bit
string specified by general-purpose registers r29 (destination word address) and r26 (bit
offset in destination word), and transfers the result to the destination bit string. Transfer
is carried out from the lower address (first address) toward the higher address (end
address).

General-purpose registers r26 through r30 are assigned as the work registers of the bit
string instruction and hold information necessary for aborting and resuming the instruction
while the instruction is executed.

General-purpose register Use
r26 Bit offset in destination word
r27 Bit offset in source word
r28 String length
r29 Destination word address
r30 Source word address

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

ORI Or Immediate
Instruction format ORI imm16, regl, reg2
Operation GR [reg2] <- GR [regl] OR zero-extend (imm16)
Format Format V
Op code 15 10 9 54 031 16
| 101100 | reg2 | regl | imm16
Flag Cy -
ov 0

S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0

Instruction ORI Or Immediate (16-bit)
Remarks ORs the word data of general-purpose register regl with the value zero-extended from
the 16-bit immediate data to word length, and stores the result in general-purpose

register reg2. The contents of general-purpose register regl are not affected.

Exception None

81

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

ORNBSU

Or Not Bit String Upward

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Supplement

Exception

82

ORNBSU

destination <- destination OR (NOT source)

Format Il

15 10 9 54 0

011111 | reg2 | 01100 |

Ccy -
ov -
s -
zZ -

ORNBSU Or Not Bit String Upward

NOTs the source bit string specified by general-purpose registers r30 (source word
address), r27 (bit offset in source word), and r28 (string length), ORs the result with the
destination bit string specified by general-purpose registers r29 (destination word
address) and r26 (bit offset in destination word), and transfers the result of the OR to
the destination bit string. Transfer is carried out from the lower address (first address)
toward the higher address (end address).

General-purpose registers r26 through r30 are assigned as the work registers of the bit
string instruction and hold information necessary for aborting and resuming the instruction
while the instruction is executed.

General-purpose register Use
r26 Bit offset in destination word
r27 Bit offset in source word
r28 String length
r29 Destination word address
r30 Source word address

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

OouT

Output to Port

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

)
2)
3)
1)
2)

3)

1)

15

OUT.B reg2, displ6 [regl]
OUT.H reg2, disp16 [regl]
OUT.W reg2, disp16 [regl]

adr <- GR [regl] + (sign-extend) disp16
Output-Port (adr, GR [reg2], Byte)

adr <- GR [regl] + (sign-extend) displ6
Output-Port (adr, GR [reg2], Halfword)
adr <- GR [regl] + (sign-extend) disp16
Output-Port (adr, GR [reg2], Word)

Format VI

10 9 54 031 16

| 1111*$| reg2 | regl | displ16

(*$:
CY
ov

S
4

(€]
(2
3)

)

(2

3)

00 = (1), 01 = (2), 11 = (3))

OUT.B Output Byte to Port
OUT.H Output Halfword to Port
OUT.W Output Word to Port

Adds the data of general-purpose register regl and the value sign-extended from
the 16-bit displacement to word length to generate an unsigned 32-bit port address.
To this port address, the lower 1 byte data of general-purpose register reg2 is
output.

Adds the data of general-purpose register regl and the value sign-extended from
the 16-bit displacement to word length to generate an unsigned 32-bit port address.
To this port address, the lower 2-byte data of general-purpose register reg2 is
output. Bit 0 of the unsigned 32-bit address is masked with 0.

Adds the data of general-purpose register regl and the value sign-extended from
the 16-bit displacement to word length to generate an unsigned 32-bit port address.
To this port address, the word data of general-purpose register reg2 is output. Bits
0 and 1 of the unsigned 32-bit address are masked with 0.

None

83

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Return from Trap or Interrupt

RETI

Instruction format RETI
Operation if PSW.NP =1

then PC <- FEPC
PSW <- FEPSW

else PC <- EIPC
PSW <- EIPSW

Format Format Il
Op code 15 10 9 54 0

011001 | reg2 | imm5 |

Flag CY Read value is set
OV Read value is set

S Read value is set

Z Read value is set

Instruction RETI Return from Trap or Interrupt

Remarks Restores the contents of the restore PC and PSW from the system register and returns
execution from a trap or an interrupt routine. This instruction performs the following
operation:

(1) Ifthe NP flag of the PSW is 1, the restore PC and PSW are restored from the FEPC
and FEPSW, respectively; if the NP flag is 0, the PC and PSW are restored from
the EIPC and EIPSW.

(2) The restored contents of the restore PC and PSW are set to the PC and PSW, and
execution jumps to the PC.

Exception None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

SAR

Shift Arithmetic Right

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

)
(2

1)
(2

1)

(2

1)

(2

CYy
ov

1)
2)

)

(2

SAR regl, reg2
SAR immb5, reg2

GR [reg2] <- GR [reg2] arithmetically shift right by GR [regl]
GR [reg2] <- GR [reg2] arithmetically shift right by zero-extend (imm5)

Format |
Format Il

15 10 9 54 0
| 000111 | reg2 | regl |

15 109 54 0
| 010111 | reg2 | imms |

1 if bit shifted out last is 1; otherwise, 0. However, O if number of shifts is 0
0

1 if GR [reg?2] is negative; otherwise, 0

1 if GR [reg2] is 0; otherwise, 0

SAR Shift Arithmetic Right by Register
SAR Shift Arithmetic Right by Immediate (5-bit)

Arithmetically shifts the word data of general purpose register reg2 to the right by
the number of bits specified by the lower 5 bits of general-purpose register regl
(copies the value of the MSB sequentially to the MSB), and writes the result to
general-purpose register reg2. If the number of shifts is 0, general-purpose register
reg2 holds the same value before this instruction has been executed. The number
of shifts can be specified in a range of 0 to +31 as it is 5-bit data.

Arithmetically shifts the word data of general-purpose register reg?2 to the right by
the number indicated by the value zero-extended from the 5-bit immediate data to
word length (copies the value of the MSB sequentially to the MSB), and writes the
result to general-purpose register reg2. If the number of shifts is 0, general-purpose
register reg2 holds the same value before this instruction has been executed. The
number of shifts can be specified in a range of 0 to +31.

None

85

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

86

SCHOBS

Search Bit 0

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

(1) SCHOBSU
(2) SCHOBSD

Finds the first O from a specified bit string
Format Il
15 10 9 54 0

| 011111 | reg2 | 0000* |
(*:0=(1),1=(2)

Cy -
ov -
S —
Z 1 if bit is not found; otherwise, 0

(1) SCHOBSU Search Bit 0 Upward
(2) SCHOBSD Search Bit 0 Downward

Searches a source bit string specified by general-purpose registers r30 (source word
address), r27 (bit offset in source word), and r28 (string length), stores the bit address
1 bit before the 1 found firstin general-purpose registers r30 and r27, and sets the value
resulting from adding the number of bits skipped before the first 1 has been found to
general-purpose register r29, and the value resulting from subtracting the number of bits
searched to general-purpose register r28, respectively. At the same time, clears the
Z flag to 0.

If the bit is not found, stores the bit address 1 bit before the source bit string to general-
purpose registers r30 and r27, and adds the number of bits skipped to general-purpose
register r29. The value of general-purpose register r28 is 0.

At the same time, sets the Z flag to 1.

If the value of general-purpose register r28 (string length) is 0, sets the Z flagto 1. The
contents of general-purpose registers r27 through r30 are not affected.

The SCH1BSU instruction searches in the forward direction (upward), and search is
started from the bit position of the address specified by general-purpose registers r30
and r27, and is carried out from the lower address (first address) toward the higher
address (end address), for a bit string having a length specified by general-purpose
register r28.

In contrast, the SCH1BSD instruction searches in the reverse direction (downward), and
search is started from the bit position of the address specified by general-purpose
registers r30 and r27, and is carried out from the higher address (end address) toward
the lower address (first address), for a bit string having a length specified by general-
purpose register r28.

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Supplement

Exception

Consequently, the address to be set to general-purpose registers r30 and r27 when the
instruction execution is started differs even if the bit string is the same, depending on

the search direction.

General-purpose registers r27 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use
r27 Bit offset in source word
r28 String length
r29 Number of bits skipped until detection
r30 Source word address

None

87

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

88

SCH1BS

Search Bit 1

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

(1) SCH1BSU
(2) SCH1BSD

Finds the first 1 from a specified bit string
Format Il
15 10 9 54 0

| 011111 | reg2 | 0001*|
(*:0=(1).,1=()

cYy -
ov -
S —
Z 1 if bit is not found; otherwise, 0

(1) SCH1BSU Search Bit 1 Upward
(2) SCH1BSD Search Bit 1 Downward

Searches a source bit string specified by general-purpose registers r30 (source word
address), r27 (bit offset in source word), and r28 (string length), stores the bit address
1 bit before the 1 found firstin general-purpose registers r30 and r27, and sets the value
resulting from adding the number of bits skipped before the first 1 has been found to
general-purpose register r29, and the value resulting from subtracting the number of bits
searched to general-purpose register r28, respectively. At the same time, clears the
Z flag to 0.

If the bit is not found, stores the bit address 1 bit before the source bit string to general-
purpose registers r30 and r27, and adds the number of bits skipped to general-purpose
register r29. The value of general-purpose register r28 is 0.

At the same time, sets the Z flag to 1.

If the value of general-purpose register r28 (string length) is 0, sets the Z flagto 1. The
contents of general-purpose registers r27 through r30 are not affected. The SCH1BSU
instruction searches in the forward direction (upward), and search is started from the
bit position of the address specified by general-purpose registers r30 and r27, and is
carried out from the lower address (first address) toward the higher address (end
address), for a bit string having a length specified by general-purpose register r28.

In contrast, the SCH1BSD instruction searches in the reverse direction (downward), and
search is started from the bit position of the address specified by general-purpose
registers r30 and r27, and is carried out from the higher address (end address) toward
the lower address (first address), for a bit string having a length specified by general-
purpose register r28.

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Supplement

Exception

Consequently, the address to be set to general-purpose registers r30 and r27 when the
instruction execution is started differs even if the bit string is the same, depending on

the search direction.

General-purpose registers r27 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use
r27 Bit offset in source word
r28 String length
r29 Number of bits skipped until detection
r30 Source word address

None

89

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

SETF Set Flag Condition
Instruction format SETF immb5, reg2
Operation if conditions are satisfied

then GR [reg2] <- 00000001H
else GR [reg2] <- 00000000H

Format Format Il
Op code 15 10 9 54 0

010010| reg2 | imm5 |

Flag Ccy -
ov -
S —
Z —
Instruction SETF Set Flag Condition
Remarks Stores 1 in general-purpose register reg2 if the condition indicated by the lower 4 bits

of the 5-bit immediate is satisfied; otherwise, stores 0. Specify one of the condition
codes shown in Table 5-10 as the lower 4 bits of the 5-bit immediate. The highest bit
is ignored.

Exception None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-10 Condition Codes

Condition code Event name Conditional expression
0000 \Y ov=1
1000 NV ov=0
0001 C/L Cy=1
1001 NC/NL CY =0
0010 z z=1
1010 NZ Z=0
0011 NH (CYorz)y=1
1011 H (CYorz)y=0
0100 S/N S=1
1100 NS/P S=0
0101 T always 1
1101 F always 0
0110 LT (SxorQV) =1
1110 GE (S xorQV) =0
0111 LE ((SxorOV)orz)=1
1111 GT ((SxorOV)orz)=0

91

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

SHL

Shift Logical Left

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

92

)
2)

1)
2)

1)

2)

1)

2)

CYy
ov

1)
2)

)

(2

SHL regl, reg2
SHL immb5, reg2

GR [reg2] <- GR [reg2] logically shift left by GR [regl]
GR [reg2] <- GR [reg2] logically shift left by zero-extend (imm5)

Format |
Format I1

15 10 9 514 0
|000100| reg2 | regl |

15 10 9 54 0
| 010100 | reg2 | imm5 |

1 if bit shifted out last is 1; otherwise, 0. However, O if number of shifts is 0
0

1 if GR [reg?2] is negative; otherwise, 0

1 if GR [reg2] is 0; otherwise, 0

SHL Shift Logical Left by Register
SHL Shift Logical Left by Immediate (5-bit)

Logically shifts the word data of general purpose register reg2 to the left by the
number of bits specified by the lower 5 bits of general-purpose register regl (sends
0 to the LSB side), and writes the result to general-purpose register reg2. If the
number of shifts is 0, general-purpose register reg2 holds the same value before
this instruction has been executed. The number of shifts can be specified in arange
of 0 to +31 as it is 5-bit data.

Logically shifts the word data of general-purpose register reg2 to the left by the
number indicated by the value zero-extended from the 5-bit immediate data to word
length (sends 0 to the LSB side), and writes the result to general-purpose register
reg2. If the number of shifts is 0, general-purpose register reg2 holds the same
value before this instruction has been executed. The number of shifts can be
specified in a range of 0 to +31.

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

SHR

Shift Logical Right

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

)
(2

1)
(2

1)

(2

1)

(2

CYy
ov

(€]
2)

)

2)

SHR regl, reg2
SHR imm5, reg2

GR [reg2] <- GR [reg2] logically shift right by GR [reg1]
GR [reg2] <- GR [reg?2] logically shift right by zero-extend (imm5)

Format |
Format Il

15 109 54 0
| 000101 | reg2 | regl |

15 109 54 0
| 010101 | reg2 | imms |

1 if bit shifted out last is 1; otherwise, 0. However, O if number of shifts is 0
0

1 if GR [reg?2] is negative; otherwise, 0

1 if GR [reg2] is 0; otherwise, 0

SHR Shift Logical Right by Register
SHR Shift Logical Right by Immediate (5-bit)

Logically shifts the word data of general purpose register reg2 to the right by the
number of bits specified by the lower 5 bits of general-purpose register regl (sends
0 to the MSB side), and writes the result to general-purpose register reg2. If the
number of shifts is 0, general-purpose register reg2 holds the same value before
this instruction has been executed. The number of shifts can be specified in arange
of 0 to +31 as it is 5-bit data.

Logically shifts the word data of general-purpose register reg2 to the right by the
number indicated by the value zero-extended from the 5-bit immediate data to word
length (sends 0 to the MSB side), and writes the result to general-purpose register
reg2. If the number of shifts is 0, general-purpose register reg2 holds the same
value before this instruction has been executed. The number of shifts can be
specified in a range of 0 to +31.

None

93

C

HAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

ST

Store

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

94

)
(2
3)
1)
2)

3)

ST.B reg2, displ6[regl]
ST.H reg2, displ6[regl]
ST.W reg2, displ6[regl]

adr <- GR [regl] + (sign-extend) displ6
Store-Memory (adr, GR [reg2], Byte)

adr <- GR [regl] + (sign-extend) displ6
Store-Memory (adr, GR [reg2], Halfword)
adr <- GR [regl] + (sign-extend) displ6
Store-Memory (adr, GR [reg2], Word)

Format VI

15

10 9 54 0 31 16

|1

10l*$| reg2 | regl | disp16

(*$
cy
ov

S
z

1)
(2
3)
)

(2

3)

No

£ 00 = (1), 01 = (2), 11 = (3))

ST.B Store Byte
ST.H Store Halfword
ST.W Store Word

Adds the data of general-purpose register regl and the displacement sign-extended
from 16 bits to word length to generate a 32-bit unsigned address, and stores the
lower 1 byte of general-purpose register reg2 in the generated address.

Adds the data of general-purpose register reg1l and the displacement sign-extended
from 16 bits to word length to generate a 32-bit unsigned address, and store the
lower 2 bytes of general-purpose register 2 in the generated address. Bit 0 of the
32-bit unsigned address is masked with 0.

Adds the data of general-purpose register regl and the displacement sign-extended
from 16 bits to word length to generate a 32-bit unsigned address, and stores the
word data of general-purpose register reg2 in the generated address. Bits 0 and
1 of the 32-bit unsigned address are masked with 0.

ne

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Store Contents of System Register
STSR

Instruction format STSR reglID, reg2

Operation GR [reg2] <- SR [reglD]
Format Format Il
Op code 15 10 9 54 0

011101 | reg2 | imm5 |

Flag cYy -
ov -
S —
Z —
Instruction STSR Store Contents of System Register
Remarks Sets the contents of a system register specified by the system register number (reg

ID) to general-purpose register reg2. The contents of the system register are not
affected. The system register number is a number to identify a system register. If the
STSR instruction is executed to a reserved system register, the operation is not
guaranteed.

Exception None

95

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

96

SUB

Subtract

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

SUB regl, reg2

GR [reg2] <- GR [reg2] — GR [regl]

Format |

15 10 9 54 0

000010| reg2 | regl |

CY 1 if borrow occurs from MSB; otherwise, 0
OV 1 if Integer-Overflow occurs; otherwise, 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise; 0

SUB Subtract
Subtracts the word data of general-purpose register regl from the word data of general-
purpose register reg2, and stores the result in general-purpose register reg2. The

contents of general-purpose register regl are not affected.

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

SUBF.S

Subtract Floating Short

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

SUBF.S regl, reg2

GR [reg2] <- GR [reg2] — GR [reg1]

Format VII
15 109 54 031 2625 16
| 111110 | reg2 | regl | 000101 RFU

CY 1 if GR [reg2] is negative; otherwise, 0
ov 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0
FRO 1 if operand is denormal number, non-number (NaN), and indefinite;
otherwise, not affected
FIV -
FzD -
FOV 1 if result of operation is greater than maximum normalized number that
can be expressed; otherwise, not affected
FUD 1 if result of operation is less than minimum (absolute value) normalized
number that can be expressed; otherwise, not affected
FPR 1 if degradation in precision is detected; otherwise, not affected

SUBF.S Subtract Floating Short

Subtracts the single-precision floating-point data of general-purpose register regl from
the single-precision floating-point data of general-purpose register reg2, reflects the
result on the flags, and stores the result to general-purpose register reg2. Of the flags,
the statuses of CY, OV, S, and Z are directly determined by the execution result of this
instruction. The other floating-point data flags are not affected unless a given condition
is satisfied, and hold the values determined before this instruction has been executed.

The S flag has the same value as that of the CY flag.

If the single-precision floating-point data of general-purpose registers regl and reg2 are
equal in both absolute value and sign, the sign of the result is determined depending
on the rounding mode. Because the rounding mode of the V810 family is “Toward

nearest”, the result is “positive zero”.

* Floating-point reserved operand exception
* Floating-point overflow exception

97

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

98

If the specified single-precision floating-point data is a denormal number, non-number,
or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO
flag is set, a trap occurs, and control is transferred to the exception processing handler.
In this case, general-purpose register reg2 and the other flags are not affected.

If the result of operation is greater than the maximum normalized number that can be
expressed, the floating-point overflow exception occurs. As aresult, the FOV flag is set,
a trap occurs, and control is transferred to the exception processing handler. In this
case, the result of operation having a corrected exponent is stored to general-purpose
register reg2.

If the result of operation is less than the minimum (absolute value) normalized number
that is not zero and can be expressed, the FUD flag is set, but a trap does not occur
and control is not transferred to the exception processing handler. In this case, zero
is stored to general-purpose register reg2.

If degradation in precision occurs as a result of rounding after conversion, the FPR flag
is set, but control is not trapped to the exception processing handler. In this case, the
result of operation having the rounded mantissa is stored to general-purpose register
reg2.

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

TRAP

Trap

Instruction format

Operation

Format

Op code

Instruction

Remarks

TRAP vector

if PSW.NP = 1
then fatal exception (MACHINE FAULT)
else if PSW.EP = 1
then FEPC <- restored PC
FEPSW <- PSW
ECR.FECC<- exception code
PSWNP <- 1
PSW.ID <- 1
PSW.AE <- 0
PC <- <NMI handler address>
else EIPC <- restored PC
EIPSW <- PSW
ECR.EICC <- exception code
PSW.EP <- 1
PSW.ID <- 1
PSW.AE <- 0
PC <- <vector adr>

Format Il

15 109 54 0
011000 | reg2 | imm5 |

cy -
ov -
s -
zZ -

TRAP Trap
If the NP flag of the PSW is 1, a fatal exception occurs, and the processor performs fatal

exception processing.
The fatal exception processing indicates the machine fault status by using the ST1, STO,

and MRQ signals, starts the write cycle, sequentially outputs the source code (OR of
FFFFOOOOH and the exception code) and the current contents of the PSW and PC to
the data bus, and stops.

If the NP flag of the PSW is 0 and the EP flag is 1, the duplexed exception occurs. In
this case, the contents of the restore PC and PSW are saved to the FEPC and FEPSW,
respectively, the exception code (FECC or ECR) is set, and the flags of the PSW are
set (the NP and ID flags are set and the AE flag is cleared). Execution then jumps to
the address of the NMI handler and exception processing is started. The condition flags
are not affected.

99

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Exception

100

If both the NP and EP flags of the PSW are 0, the restore PC and PSW are saved to
the EIPC and EIPSW, respectively, the exception code (EICC of ECR) is set, and the
flags of the PSW are set (the EP and ID flags are set and the AE flag is cleared).
Execution then jumps to the address of a trap handler corresponding to a trap vector
(0-31) specified by vector, and exception processing is started. The condition flags are
not affected.

The restore PC is the address of the instruction next to the TRAP instruction.

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

TRNC.SW

Truncate Short Floating to Word Integer

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Exception

TRNC.SW regl, reg2

GR [reg2] <- truncate (GR [regl])

Format VII

15 109 54 031 2625 16
| 111110 | reg2 | regl | 001011 | RFU

cYy -

oV 0

S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0
FRO 1 if GR [regl] is denormal number, non-number (NaN), and indefinite;
otherwise, not affected
FIV 1 if invalid operation occurs; otherwise, not affected
FzD -
FOvV -
FUD -
FPR 1 if degradation in precision is detected; otherwise, not affected

TRNC.SW Truncate Short Floating to Word Integer

Converts the single-precision floating-point data of general-purpose register regl to
integer data, reflects the result on the flags, and stores the result to general-purpose
register reg2. Of the flags, the statuses of CY, OV, S, and Z are directly determined
by the execution result of this instruction. The other floating-point data flags are not
affected unless a given condition is satisfied, and hold the values determined before this
instruction has been executed.

* Floating-point reserved operand exception
* Floating-point invalid operation exception

If the specified single-precision floating-point data is a denormal number, non-number,
or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO
flag is set, a trap occurs, and control is transferred to the exception processing handler.
In this case, general-purpose register reg2 and the other flags are not affected.

If the operation result is not in a range in which a word-length integer cannot be
expressed, the invalid floating-point operation exception occurs. As a result, the FIV
flag is set, a trap occurs, and control is transferred to the exception processing handler.
In this case, general-purpose register reg2 and the other flags are not affected.

101

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

If degradation in precision occurs as a result of rounding after conversion, the FPR flag
is set, but control is not trapped to the exception processing handler. In this case, the
result O operation having the rounded mantissa is stored to general-purpose register
reg2.

102

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Exclusive Or
XOR

Instruction format XOR regl, reg2

Operation GR [reg2] <- GR [reg2] XOR GR [regl]
Format Format |

Op code 15 10 9 54 0

001110 | reg2 | regl |

Flag cYy -
ov 0
S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0

Instruction XOR Exclusive Or
Remarks Exclusive-ORs the word data of general-purpose register reg2 with the word data of
general-purpose register regl, and stores the result in general-purpose register reg2.

The contents of general-purpose register regl are not affected.

Exception None

103

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

XORBSU

Exclusive Or Bit String Upward

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Supplement

Exception

104

XORBSU

destination <- destination XOR source

Format Il

15 10 9 54 0

011111 | reg2 | 01010 |

Ccy -
ov -
s -
zZ -

XORBSU Exclusive Or Bit String Upward

Exclusively ORs the source bit string specified by general-purpose registers r30 (source
word address), r27 (bit offset in source word), and r28 (string length) with the destination
bit string specified by general-purpose registers r29 (destination word address) and r26
(bit offset in destination word), and transfers the result to the destination bit string.
Transfer is carried out from the lower address (first address) toward the higher address
(end address).

General-purpose registers r26 through r30 are assigned as the work registers of the bit
string instruction and hold information necessary for aborting and resuming the instruction
while the instruction is executed.

General-purpose register Use
r26 Bit offset in destination word
r27 Bit offset in source word
r28 String length
r29 Destination word address
r30 Source word address

None

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Exclusive Or Immediate
XORI

Instruction format XORI imm16, regl, reg2
Operation GR [reg2] <- GR [regl] XOR zero-extend (imm16)
Format Format V
Op code 15 10 9 54 031 16
| 101110 | reg2 | regl | imm16
Flag Cy -
ov 0

S 1if GR [reg2] is negative; otherwise, 0
Z 1if GR [reg2] is O; otherwise, 0

Instruction XORI Exclusive Or Immediate (16-bit)
Remarks Exclusive-ORs the word data of general-purpose register regl with the value zero-
extended from the 16-bitimmediate data to word length, and stores the resultin general-

purpose register reg2. The contents of general-purpose register regl are not affected.

Exception None

105

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

XORNBSU

Exclusive Or Not Bit String Upward

Instruction format

Operation

Format

Op code

Flag

Instruction

Remarks

Supplement

Exception

106

XORNBSU
destination <- destination XOR (NOT source)
Format Il

15 109 54 0
011111 | reg2 | 01110 |

Ccy -
ov -
s -
zZ -

XORNBSU Exclusive Or Not Bit String Upward

NOTSs the source bit string specified by general-purpose registers r30 (source word
address), r27 (bit offset in source word), and r28 (string length), exclusive—ORs the
resultwith the destination bit string specified by general-purpose registers r29 (destination
word address) and r26 (bit offset in destination word), and transfers the result of the
exclusive OR to the destination bit string. Transfer is carried out from the lower address
(first address) toward the higher address (end address).

General-purpose registers r26 through r30 are assigned as the work registers of the bit
string instruction and hold information necessary for aborting and resuming the instruction
while the instruction is executed.

General-purpose register Use
r26 Bit offset in destination word
r27 Bit offset in source word
r28 String length
r29 Destination word address
r30 Source word address

None

CHAPTER 5

INSTRUCTION FORMAT AND INSTRUCTION SET

5.4 Instruction Execution Clock Cycles

5.4.1 Normal instruction

The V810 family instruction execution clock cycles (excluding bit string instruction) are shown in Table 5-11.
This data is the minimum execute clock cycles with cache hit, no hazard, and no wait.
For the LD.W, ST.W , IN.W, and OUT.W instructions, the execution clock cycles will differ according to the

external bus width.

Table 5-11 Instruction Execution Clock Cycles (1/3)

Instruction Group

Mnemonic

Operand

Clock Cycles

Integer
Arithmetic
Operation/
Logical
Operation

Instructions

MOV

ADD

SUB

CMP

SHL

SHR

SAR

MUL

DIV

MULU

DIVU

OR

AND

XOR

NOT

regl, reg2

1

13

38

13

36

MOV

ADD

SETF

CMP

SHL

SHR

SAR

immb5, reg2

MOVEA

ADDI

ORI

ANDI

XORI

MOVHI

imm16, regl, reg2

107

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Notes 1.

108

Table 5-11 Instruction Execution Clock Cycles (2/3)

Instruction Group Mnemonic Operand Clock Cycles
Special TRAP imm5 15
Instructions RETI 10
CAXI disp16 [regl], reg2 32-bit bus: 22
16-bit bus: 26
Program JMP [regl] 3
Control JR (disp26) [PC] 3
Instructions JAL
Bcond (disp9) [PC] taken = 3
No-taken = 1
Load/Store LD.B disp16 [regl], reg2 1-3Note 1
Instructions LD.H
LD.W 32-bit bus: 1-3Noe?

16-bit bus: 1-5Note 2

ST.B reg2, displ6 [regl] 1 (2)Note3
ST.H
ST.W 32-bit bus: 1 (2)Note 3

16-bit bus: 1 (4)Nees

I/0 Instructions IN.B disp16 [regl], reg2 3
IN.H
IN.W 32-bit bus: 3
16-bit bus: 5
OUT.B reg2, displ6 [regl] 1 (2)Noes
OUT.H
OUT.W 32-bit bus: 1 (2)Noes

16-bit bus: 1 (4)Nete 3

The number of execution clock cycles for the LD instructions (excluding LD.W in the 16-bit bus
mode) differs depending on the preceding instruction as explained below:
3 cycles :when the LD instruction is executed alone
2 cycles :when an LD instruction precedes the LD instruction (for the latter one)
1 cycle : whenthe LD instruction follows an instruction which requires many execution clock
cycles and does not perform any operations conflicting with the LD instructions
The number of execution clock cycles for the LD.W instruction in the 16-bit bus mode differs
depending on the preceding instruction as explained below:
5 cycles : when the LD.W instruction is executed alone
4 cycles : when an LD instruction precedes the LD.W instruction (for the latter one)
1 cycle : when the LD.W instruction follows an instruction which requires many execution
clock cycles and does not perform any operations conflicting with the LD instructions
The number in parentheses applies to the instruction execution after two or more consecutive
executions of the same instruction.

CHAPTER 5

INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-11 Instruction Execution Clock Cycles (3/3)

Instruction Group Mnemonic Operand Clock Cycles
Floating-point CVT.WS regl, reg2 5-16
Operation CVT.SW 9-14
Instructions TRNC.SW 8-14
CMPF.S 7-10
ADDF.S 9-28
SUBF.S 12-28
MULF.S 8-30
DIVF.S 44

109

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

5.4.2 Search bit string instructions

The execution clock cycles of the search bit string instructions (SCHOBSU, SCH1BSU, SCHOBSD, SCH1BSD)
are shown in Table 5-12.

This data shows the minimum execution clock cycles with cache hit, no hazard, and no wait in the 32-/16-bit
bus mode.

Table 5-12 Execution Clock Cycles of Search Bit String Instructions (1/4)

(a) 32-bit bus (1/2)

Boundary Condition Search Range | Clock Cycles by Pattern Detection Position When
Instructions (Positions of start (word length) No
and end points) (N o 3)Note 1st word | 2nd word |pth word™°¢| Nth word | Detection
SCHOBSU Bit string length = 0 0 — — — — 13
or l_’l l 2 l N ! 1 29 — — — 29
scHiBsu | = ! 2 ! N l 1 29 — — — 29
l 1 l 2 : N l 1 29 — — — 29
— I |
1 2 N 1 29 — — — 29
|T|_,2 | N l 2 38 39 — — 40
l 1_|_‘2 l N l 2 28 47 — — 47
' l_'—z" N ' 2 28 52 — — 46
'T'—Z" N | 2 38 41 — — 35
I 1 ! 2 ! N | N 38 41 3p +35 3N + 33 3N + 34
l 1 I 2 I N | N 28 52 3p + 46 3N + 44 3N + 45
l 1 : 2 : N | N 28 52 3p + 46 3N + 46 3N + 40
I 1 : > : N I N 38 41 3p+35 | BN+35 | 3N+29
Note N > p ¢ 3 (N is the last word of the search range.)

110

CHAPTER 5

INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-12 Execution Clock Cycles of Search Bit String Instructions (2/4)

(a) 32-bit bus (2/2)

Boundary Condition Search Range | Clock Cycles by Pattern Detection Position When
Instructions (Positions of start (word length) No
and end points) (N o 3)Note 1st word | 2nd word [pth wordM°t¢| Nth word | Detection
SCHOBSD Bit string length = 0 0 — — — — 15
—— 1 I _ _ _
or 1 5 N 1 26 28
[=1 I
SCH1BSD 1 > N 1 26 — — — 28
[= I
1 > N 1 26 — — — 28
E— I
1 2 N 1 26 — — — 28
——
1 2 N 2 31 48 — — 50
L =—t— | 2 31 48 — — 50
1 2 N
L = 2 43 48 — — 47
1 2 N
T 2 43 46 — — 40
1 2 N
[I I
L I I + + +
1 > N N 31 55 3p + 49 3N + 49 3N + 43
| I I + + +
1 > N N 31 55 3p + 49 3N + 51 3N + 50
I i I
1 > N N 43 46 3p +40 3N + 42 3N + 41
[I I
L T T
1 > N N 43 46 3p +40 3N + 40 3N + 34
Note N > p ¢ 3 (N is the last word of the search range.)

111

CHAPTER 5

INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-12 Execution Clock Cycles of Search Bit String Instructions (3/4)

(b) 16-bit bus (1/2)

Boundary Condition Search Range | Clock Cycles by Pattern Detection Position When
Instructions (Positions of start (word length) No
and end points) (N o 3)Noe 1st word | 2nd word |pth word™°¢| Nth word | Detection
SCHOBSU Bit string length = 0 0 — — — — 13
or I_‘l l > l N 1 31 — — — 31
schigsy | ——L——I1— 1 31 — — — 31
| 1_’| 3 | N 1 31 — — — 31
1 | 2 | N 1 31 — — _ 31
'T'_‘z ' N 2 40 43 — — 44
| 1_|_2’ | N 2 30 51 — — 51
:1_|—2“ N 2 30 56 — — 50
— 2 40 45 - - 39
I 1 I > I N N 40 45 5p + 35 5N + 33 5N + 34
l 1 I > I N N 30 56 5p + 46 5N + 44 5N + 45
l 1 I 2 I N N 30 56 5p + 46 5N + 46 5N + 40
I 1 I 2 : N N 40 45 5p + 35 5N + 35 5N + 29
Note N > p ¢ 3 (N is the last word of the search range.)

112

CHAPTER 5

INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-12 Execution Clock Cycles of Search Bit String Instructions (4/4)

(b) 16-bit bus (2/2)

Boundary Condition Search Range | Clock Cycles by Pattern Detection Position When
Instructions (Positions of start (word length) No
and end points) (N o 3)Noe 1st word | 2nd word |pth word™°¢| Nth word | Detection
SCHOBSD Bit string length = 0 0 — — — — 15
or =1 I _ 1 28 - - - 30
SCH1BSD ' . ' 3 ' N 1 28 — — — 30
' T ' 3 ' N 1 28 — — — 30
I<l—| 5 | N 1 28 — — — 30
"1—'_2 ' N 2 33 52 — — 54
' 1‘_'—2 ' N 2 33 52 — — 54
L= 2 45 52 - - 51
= 2 45 50 — — 44
’ - I - I S N 33 59 5p+49 | 5N+49 | 5N + 43
| . ’ - ’ S N 33 59 5p+49 | 5N +51 | 5N + 50
' I ‘_'T'_N N 45 50 5p+40 | 5N +42 | 5N+ 41
I 1 I 2 I N N 45 50 5p + 40 5N + 40 5N + 34
Note N > p ¢ 3 (N is the last word of the search range.)

113

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

5.4.3 Arithmetic bit string instructions

The execution clock cycles of the arithmetic bit string instructions (MOVBSU, NOTBSU, ANDBSU, ANDNBSU,
ORBSU ORNBSU, XORBSU, XORNBSU) are shown in Table 5-13. The boundary conditions of the transfer types
(TYPE1 to TYPE7) are shown in Table 5-14.

This data shows the minimum execution clock cycles without cache hit, no hazard, and no wait.

Table 5-13 Execution Clock Cycles of Arithmetic Bit String Instructions

Clock Cycles
Types Boundary Condition Image 1 wordNete 2 wordNet Nth word (N « 3)Noe
32-bit bus | 16-bit bus | 32-bit bus | 16-bit bus | 32-bit bus | 16-bit bus
TYPE1 32 38 41 53 6N + 30 | 12N + 30
sre. | \| | |\ |
dst. | | | | |
1 2 N N+1
TYPE2 32 38 42 54 6N +31 | 12N + 31
i R -
dst. | | | | |
1 2 N N+1
TYPE3| o | | | | | 37 43 48 60 6N + 35 | 12N + 35
N .
dst. | | | | |
1 2 N N+1
TYPE4 | ¢ | [[[| 43 49 49 61 6N +36 | 6N + 36
dst. | | | | |
1 2 N N+1
TYPES | (. | [[[| 32 38 43 55 6N +31 | 12N + 31
dst. | | | | |
1 2 N N+1
TYPEG6 14 20 — —
src. | | | | | |
dst. | | | | |
1 2 N N+1
TYPE7 37 43 — —
src. | I | | | |
dst. | | | | |
1 2 N N+1
Note Number of words of memory space occupied by source bit string. (N is the last word of the source
bit string.)
Remark src.: Source bit string

dst.: Destination bit string

114

CHAPTER 5

INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-14 Boundary Condition of Arithmetic Bit String Instructions

Condition Types
length « 0 src. ofs = dst. ofs Is src. ofs + length a multiple of the word number? YES | TYPE1l
NO TYPE2
Are the number of words of the YES | dst. ofs=0 | TYPE3
memory space occupied by the source
bit string and that of the memory dst. ofs « 0 | TYPES
space occupied by the destination bit
string the same? NO TYPE4
length = 0 TYPEG6
When the source and destination bit strings are in the same word and src. ofs>dst. ofs. TYPE7

Remark

length : Bit string length
src. ofs : Bit offset in word of source bit string
dst. ofs : Bit offset in word of destination bit string

115

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

[MEMO]

116

CHAPTER 6

INTERRUPT AND EXCEPTION

Interrupts are events that take place independently of the program execution and can be classified into

maskable interrupts and a non-maskable interrupt. An exception is an event that takes place depending upon the

program execution. There is little difference between the interrupt and exception in terms of flow, but the interrupt

takes precedence over the exception. The V810 family architecture is provided with the interrupts and exceptions

listed in the table below. If a maskable interrupt or NMI occurs, control is transferred to a handler whose address

is determined by the source of the interrupt or exception. The exception source can be checked by examining an
exception code stored in the ECR (Exception Code Register). Each handler analyzes the contents of the ECR
and performs appropriate exception/interrupt processing.

Table 6-1 Exception Codes

Handler address

Restore PCNoe

Exception and interrupt Classification | Exception code
Reset Interrupt FFFO
NMI Interrupt FFDO
Duplexed exception Exception Note 4
Address trap Exception FFCO
Trap instruction (parameter is 0x1n) Exception FFBn
Trap instruction (parameter is 0x0n) Exception FFAnN
Invalid instruction code Exception FF9O0
Zero division Exception FF80
FIV (floating-point invalid operation) Exception FF70
FZD (floating-point zero division) Exception FF68
FOV (floating-point overflow) Exception FF64
FUD (floating-point underflow)Nete s Exception FF62
FPR (floating-point precision degradation)No©® Exception FF61
FRO (floating-point reserved operand) Exception FF60
INT level n (n = 0-15) Interrupt FEnoO

FFFFFFFO
FFFFFFDO
FFFFFFDO
FFFFFFCO
FFFFFFBO
FFFFFFAO
FFFFFF90
FFFFFF80
FFFFFF60
FFFFFF60
FFFFFF60
FFFFFF60
FFFFFF60
FFFFFF60
FFFFFENO

Note 2
next PChote 3
current PC
current PC

next PC

next PC
current PC
current PC
current PC
current PC
current PC
current PC
current PC
current PC

next PCNote 3

Notes 1.

PC to be saved to EIPC or FEPC.

2. EIPC and FEPC are undefined.

3. While an instruction whose execution is aborted by an interrupt (refer to Table 6-2) is executed, restore PC =

current PC.

4. The exception code of the exception that occurs for the first time is stored to the lower 16 bits of the ECR, and

the exception code of the exception that occurs the second time is stored in the higher 16 bits.

5. In the V810 family, the floating-point underflow exception and floating-point precision degradation exception do

not occur.

Table 6-2 Instructions Aborted by Interrupt

Instructions aborted by interrupt

Bit string

DIV/DIVU instruction

instructions

Floating-point operation instructions

117

CHAPTER 6 INTERRUPT AND EXCEPTION

6.1 Exception Processing

If an exception occurs, the processor performs the following processing and transfers control to a handler

routine:

1)
2)
3)
4)
(5)
(6)
(7
(8)

9)

118

If the NP of the PSW has been already set, proceeds to (8) Fatal exception processing.

If the EP of the PSW has been already set, proceeds to (9) Duplexed exception processing.

Saves the restore PC to the EIPC.

Saves the current PSW to the EIPSW.

Writes the exception code to the lower 16 bits of the ECR (EICC).

Sets the EP and ID bits of the PSW and clears the AE bit.

Jumps to the handler address.

Fatal exception processing

(a) Becomes the machine faults status, starts the write cycle, and sequentially outputs the source code
(OR of FFFFO000H and exception code) of the fatal exception at address 00000000H, the current
PSW at address 00000004H, and the current PC at address 00000008H to the data bus.

(b) Halts until reset.

Duplexed exception processing

(a) Saves the restore PC to the FEPC.

(b) Saves the current PSW to the FEPSW.

(c) Writes the exception code of the source that causes the duplexed exception to the higher 16 bits
of the ECR (FECC).

(d) Sets the NP and ID bits of the PSW and clears the AE bit.

(e) Jumps to address FFFFFFDOH (NMI handler address).

Exception occurs

Fatal exception

Machine fault status

Address 00000000H = source code
Address 00000004H = current PSW
Address 00000008H = current PC

Halt

Duplexed exception

0
EIPC ~— restore PC FEPC ~— restore PC
EIPSW < PSW FEPSW < PSW
ECR.EICC = exception code ECR.FECC =— exception code
PSW.EP = 1 PSW.INP =1
PSW.ID =1 PSW.ID <1
PSW.AE =0 PSW.AE =0
Jumps to handler address Jumps to handler address

(address FFFFFFDOH)

CHAPTER 6 INTERRUPT AND EXCEPTION

6.2 Interrupt Processing

6.2.1 Maskable interrupt

If a maskable interrupt is caused to occur by the INT input, the processor performs the processing described
below, and transfers control to the handler routine. The EIPC and EIPSW are used to save the contents of the
PC and PSW.

The maskable interrupt is masked by logical sum of the NP, EP, and ID of the PSW. Moreover, the interrupt
is not accepted if the interrupt level n is lower than the interrupt enable level (13-10) of the PSW (n < 13-10).

Therefore, the interrupt of the highest level (n = 15) cannot be disabled by the interrupt enable level.

1)
(2)
3)
4)
©)

(6)

Saves the restore PC to the EIPC.

Saves the current PSW to the EIPSW.

Writes the exception code to the lower 16 bits of the ECR (EICC).

Sets the EP and ID bits of the PSW and clears the AE bit.

Sets a value resulting from adding 1 to the level n of the interrupt accepted (i.e., n+1) to the | (13-10) field
of the PSW. However, sets 15 to the | field if the level of the accepted interrupt is the highest (n = 15).
Jumps to the handler address.

119

CHAPTER 6

INTERRUPT AND EXCEPTION

120

Maskable interrupt (INT) occurs

PSW.NP

Interrupt Level

<Interrupt enable Level

2Interrupt enable level

EIPC - restore PC
EIPSW < PSW

ECR.EICC =— exception code

PSW.EP =1
PSW.ID =1
PSW.AE =0
Sets PSW. 13-10

Jumps to handler address

Ignored

Ignored

Ignored

Ignored

CHAPTER 6 INTERRUPT AND EXCEPTION

6.2.2 Non-maskable interrupt

If the non-maskable interrupt is caused to occur by the NMI input, the processor performs the processing
described below and transfers control to the handler routine. The FEPC and FEPSW are used to save the contents
ofthe PC and PSW. If another non-maskable interrupt request occurs while a non-maskable interruptis processed
(the NP bit of the PSW is 1), the interrupt request is internally held by the processor (a non-maskable interrupt
request that occurs during a period in which the latch is cleared by the internal processing immediately after the
start of processing the first non-maskable interrupt is not held to the internal latch of the processor). At this time,
if the NP bit of the PSW is cleared to 0 by using the RETI and LDSR instructions, new non-maskable interrupt
processing is started by the non-maskable interrupt request internally held by the processor.

(1) Saves the restore PC to the FEPC.

(2) Saves the current PSW to the FEPSW.

(3) Writes the exception code to the higher 16 bits of the ECR (FECC).
(4) Sets the NP and ID bits of the PSW and clears the AE bit.

(5) Jumps to address FFFFFFDOH (NMI handler address).

Non-maskable interrupt (NMI) occurs

1 Interrupt request is internally held.
Processing is started when NP of
PSW is cleared to 0.

FEPC ~—restore PC
FEPSW <—PSW
ECR.FECC -=—exception code
PSW.NP =1

PSW.ID =1

PSW.AE =0

Jumps to handler address
(address FFFFFFDOH)

121

CHAPTER 6 INTERRUPT AND EXCEPTION

6.3 Returning from Exception/Interrupt
To return execution from an exception event other than the fatal exception, the RETI instruction is used.

(1) If NP of PSW =1, the restore PC and PSW are restored from the FEPC and FEPSW; if NP = 0, the PC
and PSW are restored from the EIPC and EIPSW.
(2) Restores the restore PC and PSW, and jumps to the PC.

RETI instruction

PSW.NP
0
PC ~EIPC PC --FEPC
PSW <« EIPSW PSW <— FEPSW
Jumps to PC Jumps to PC

122

CHAPTER 6 INTERRUPT AND EXCEPTION

6.4 Priority

6.4.1 Priorities of interrupts and exceptions
The following table shows the priorities of the interrupts and exceptions. If two or more interrupts or exceptions
occur simultaneously, they are processed according to their priorities.

Table 6-3 Priorities of Interrupts and Exceptions

RESET NMI INT AD-TR TRAP 1-OPC DIVO FLOAT
RESET * * * * * * *
NMI] <- <- <- <- <- <-
INT O T <- <- <- <- <-
AD-TR 0 T T <- <- <- <-
TRAP O T T T - - -
I-OPC a T T T - - -
DIVO O T T T - - -
FLOAT 0))) - - -
RESET : Reset
NMI : Non-maskable interrupt
INT . Maskable interrupt
AD-TR : Address trap
TRAP : Trap instruction
I-OPC : lllegal op code
DIVO : Zero division
FLOAT : Floating-point exceptions (invalid operation, zero division, overflow, and reserved operand exceptions)
* : Item shown on the left ignores the item above.
O . Item shown on the left is ignored by the item above.
- . Item shown on the left does not occur simultaneously with the item above.
<- . Item shown on the left has a higher priority than the item above.
T : Item shown above has a higher priority than the item shown on the left.

123

CHAPTER 6 INTERRUPT AND EXCEPTION

6.4.2 Priorities of floating-point exceptions

Table 6-4 shows the priorities of the floating-point exceptions.

Table 6-4 Priorities of Floating-Point Exceptions

FRO FIV FzZD FOV FUD FPR
FRO * * * — —
FTV O * * - -
FzD 0 0 * - -
FOV 0 0 0 - -
FUD - - - - -
FPR - - - - -
FRO : Floating-point reserved operand
FIV . Floating-point invalid operation
FzD : Floating-point zero division
FOV : Floating-point overflow
FUD : Floating-point underflow
FPR : Floating-point precision degradation
* : Item shown on the left ignores the item above.
O . Item shown on the left is ignored by the item above.

Remark The FUD and FPR do not occur on V810 family.

6.4.3 Interrupt execution timing

An interrupt is accepted when an instruction is executed. However, if the instruction takes 2 or more clocks
to be executed, the interrupt is accepted during the period of the last 1 clock of the instruction. Therefore, if an
interrupt request is issued while no instruction is executed (in wait or bus hold status), the interrupt is accepted

when the next instruction is executed.

124

: Item shown on the left does not occur simultaneously with the item above.

CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS

These functions serve to inspect the contents of the internal instruction cache memory of the V810 family.

(1) Cache configuration

Fig. 7-1 shows the configuration of the internal instruction cache of the V810 family.

Fig. 7-1 Cache Configuration

Capacity . 1K bytes
Mapping method : Direct mapping
Block size : 8 bytes
Subblock size : 4 bytes
31 10 9 32 0
Memory address TAG Index Offset
Tag memory Data memory
(ICHT27-ICHTO) (ICHD31-ICHDO)
27 2221 0 31 0
Subblock (4 bytes) Block
Entry O [:::f: TAG31-TAG10 (8 bytes)
Entry 1
128 entries 128 blocks
Entry 127
Valid bit (1 bit for each 4 bytes)

NECRYV (reserved by NEC)

125

CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS

2)

Inspection method
Control the cache control word in the following procedure by using the LDSR instruction:

<1>

<2>

<3>

<4>

<5>

<6>

<7>

Prepare data to be restored to the cache.

Clear the ICE bit to “0” to disable the cache.

Set the first address of the restore data in the SA field, and at the same time, set the ICR bit to
“1" to start executing restoring.

Set the first address of the dump area in the SA field, and at the same time, set the ICD bit to “1”
to start dump execution.

Inspect the contents of the cache dumped to the dump area.

Set the start entry number that clears the cache and the number of entries to be cleared in the
CEN and CEC fields, and at the same time, set the ICC bit to “1” to start execution of clearing (all
the entries must be eventually cleared).

Set the ICE bit to “1” to enable the cache.

While the cache is dumped, restored, or cleared, interrupts are disabled. An interrupt request generated during

this period is internally held until the processing ends. Therefore, start of the interrupt processing is delayed (a

maskable interrupt is ignored unless all the NP, EP, and ID flags of the PSW are “0”).

The interrupt disable period can be shortened by processing each entry by using the CEN and CEC fields.

However, all the entries must be eventually cleared.

126

CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS

Address

SA+0

SA+4

SA+8

SA+12

SA+1016

SA+1020

SA+1024

SA+1532

Fig. 7-2 Cache Dump Format

ICHD31-ICHDO
31
Subblock 0
Subblock 1
NECRV Valid bit TAG31-TAG10
31 28 27 24 23 22 21
ICHT27-ICHTO

Block 0

Block 1

Block 127

Entry 1

} Entry O

} Entry 127

127

CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS

[MEMO]

128

CHAPTER 8 DEBUG SUPPORT FUNCTION

The address trap function is made valid by setting an address (TA: Trap Address) at which a trap is to occur
to the address trap register (ADTRE), and setting the AE bit of the PSW.

When the program is executed with the address trap function enabled, and if the current contents of the PC
(= first address of an instruction) coincide with the trap address (TA), the V810 family performs exception
processing and transfers control to an address trap handler routine (address FFFFFFCOH).

129

CHAPTER 8 DEBUG SUPPORT FUNCTION

[MEMO]

130

CHAPTER 9 RESET

When the RESET pin goes low, the system reset is triggered, and each on-chip hardware is initialized.

9.1 Initialization

When the RESET pin goes low, the system reset is triggered, and each hardware register is initialized as shown

in Table 9-1. When the RESET goes high, the device is released from the reset state and the program execution
is started. Initialize the contents of each register as required in the program.

Table 9-1 Register Status after Reset

Hardware Names and Symbols

Status after Reset

Program counter PC FFFFFFFOH

Interrupt status saving register EIPC Undefined
EIPSW

NMI status saving register FEPC Undefined
FEPSW

Interrupt source register (ECR) FECC 0000H
EICC FFFOH

Program status word PSW 00008000H

General-purpose register r0 00000000H fixed
ri-r31 Undefined

9.2 Starting Up

The V810 family starts the execution of the program from FFFFFFFOH when reset. Immediately after reset,

the interrupt request is not acknowledged. To use interrupt for the program, set the NP bit of the program status

word (PSW) to 0.

131

CHAPTER 9 RESET

[MEMO]

132

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

This appendix lists the mnemonics of the instructions explained in this manual. In the table shown on the
following pages, the instruction mnemonics are listed in alphabetical order, so that brief explanations for necessary

instructions can be found in the same way as consulting a dictionary.

Instruction mnemonic Operand Format CYOVvsz Instruction function
Legend
ADD regl, reg2 | *okokx
Instruction Operand name Instruction Flag operation
mnemonic format — Not affected
* Affected
0 Cleared to 0
1 Setto1l
Name Meaning
regl General-purpose register (used as source register)
reg2 General-purpose register (mainly used as destination register. Some registers are used as source
registers)
imm5 5-bit immediate
imm16 16-bit immediate
disp9 9-bit displacement
displ6 16-bit displacement
disp26 26-bit displacement
reqlD System register number
vector adr Trap handler address corresponding to trap vector

133

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (1/7)

Instructic?n Operand Format CY OV S Z Instruction function Page

mnemonic

ADD regl, reg2 | * Addition. Adds word data of regl to word data of 41
reg2 and stores result to reg2.

ADD immb5, reg2 1] * Addition. Adds value sign-extended from 5-bit 41
immediate value to word length to word data of
reg2, and stores result to reg2.

ADDF.S regl, reg2 Vil * Floating-point addition. Adds single-precision 42
floating-point data of regl and reg2, reflects result
on flags, and stores result to reg2.

ADDI imm16, regl, reg2 \% * Addition. Adds value sign-extended from 16-bit 44
immediate value to word length to word data of
regl and stores result to reg2.

AND regl, reg2 | * AND. ANDs word data of reg2 and regl, and 45
stores result to reg2.

ANDBSU - I — Transfer with AND of bit string. ANDs source bit 46
string, and destination bit string, and transfers
result to destination bit string.

ANDI imm16, regl, reg2 \ * AND. ANDs word data of regl with value zero- 47
extended from 16-bit immediate value to word
length, and stores result to reg2.

ANDNBSU - I — Transfer with AND NOT of bit string. ANDs NOTed 48
source bit string, with destination bit string, and
transfers result to destination bit string.

BC disp9 11 — Conditional branch (if Carry). PC relative branch 50

BE disp9 1] — Conditional branch (if Equal). PC relative branch 50

BGE disp9 1 — Conditional branch (if Greater than or Equal). 50
PC relative branch

BGT disp9 11 — Conditional branch (if Greater than). 50
PC relative branch

BH disp9 11 — Conditional branch (if Higher). PC relative branch 50

BL disp9 1 — Conditional branch (if Lower). PC relative branch 50

BLE disp9 1 — Conditional branch (if Less than or Equal). 50
PC relative branch

BLT disp9 1 — Conditional branch (if Less than). PC relative branch 50

BN disp9 1 — Conditional branch (if Negative). PC relative branch 50

BNC disp9 11 — Conditional branch (if Not Carry). PC relative branch 50

BNE disp9 1 — Conditional branch (if Not Equal). PC relative branch 50

BNH disp9 1 — Conditional branch (if Not Higher). 50
PC relative branch

BNL disp9 11 — Conditional branch (if Not Lower). 50
PC relative branch

BNV disp9 11 — Conditional branch (if Not Overflow). 50
PC relative branch

BNZ disp9 1 — Conditional branch (if Not Zero). PC relative branch 50

BP disp9 I — Conditional branch (if Positive). PC relative branch 50

134

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (2/7)

Instruction

mnemonic

Operand Format

Instruction function

Page

BR
BV
BZ
CAXI

CMP

CMP

CMPFE.S

CVT.SW

CVT.WS

DIV

DIVF.S

DIVU

HALT
IN.B

disp9 11
disp9 I
disp9 11
disp16 [regl], reg2 Vi
regl, reg2 |
imm5, reg2 Il
regl, reg2 VII
regl, reg2 VI
regl, reg2 VI
regl, reg2 |
regl, reg2 VIl
regl, reg2 |
- I
disp16 [regl], reg2 VI

Unconditional branch. PC relative branch

Conditional branch (if Overflow). PC relative branch

Conditional branch (if Zero). PC relative branch

Inter-processor synchronization instruction for

multi-processor system

Compare. Compares word data of reg2 with word
data of regl, and indicates result to flags.
Comparison is made by subtracting contents of
regl from word data of reg2.

Compare. Compares word data of reg2 with value
sign-extended from 5-bit immediate value to word
length, and indicates result to flags. Comparison is
made by subtracting value sign-extended from 5-bit
immediate value to word length from word data of
reg2.

Floating-point compare. Compares single-precision

data of regl and reg2, and indicates result to flag.
Comparison is made by subtracting floating-point
data of regl from floating-point data of reg2.

Type conversion of floating-point data to integer.

Converts single-precision floating-point data of regl
to integer, reflects result on flags, and stores result
to reg2.

Type conversion of integer to floating-point data.

Converts integer data of regl to single-precision
floating-point data, reflects result on flags, and
stores result to reg2.

Signed divide. Divides word data of reg2 by word
data of regl (signed), and stores quotient to reg2
and remainder to r30. Division is performed so that
sign of remainder matches sign of dividend.

Floating-point divide. Divides single-precision

floating-point data of reg2 by single-precision
floating-point data of regl, reflects result on

flags, and stores result to reg2.

Unsigned divide. Divides word data of reg2 by
word data of regl without sign, and stores quotient
to reg2 and remainder to r30. Division is performed
so that sign of remainder matches sign of dividend.
Processor halt.

Port input. Adds data of regl and data sign-
extended from 16-bit displacement to word length to
create 32-bit unsigned port address. Byte data is
read from created port address, zero-extended to

word data, and stored to reg2.

50
50
50
51

53

53

54

55

57

58

59

61

62
63

135

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (3/7)

Instruction

mnemonic

Operand

Format CY OV S Z

Instruction function

Page

IN.H

IN.W

JAL

JMP

JR

LD.B

LD.H

LD.W

LDSR

136

displ16 [regl], reg2

disp16 [regl], reg2

disp26

[regl]

disp26

disp16 [regl], reg2

disp16 [regl], reg2

disp16 [regl], reg2

reg2, reglD

VI - - - -

VI - - - -

VI - - - -

VI - - - -

VI - - - -

Port input. Adds data of regl and data sign-
extended from 16-bit displacement to word length
to create 32-bit unsigned port address. Halfword
data is read from created port address, zero-
extended to word length, and stored to reg2. Bit 0
of 32-bit unsigned port address is masked with 0.
Port input. Adds data of regl and data sign-
extended from 16-bit displacement to word length
to create 32-bit unsigned port address. Word data is
read from created port address and stored to reg2.
Bits 0 and 1 of 32-bit unsigned port address are
masked with 0.

Jump and link. Saves value resulting from adding
4 to current PC into r31, sets value resulting from
adding PC to the value sign-extended from 26-bit
displacement to word length, and transfers control.
Bit 0 of 26-bit displacement is masked with 0.

Reqister indirect unconditional branch. Transfers

control to address specified by regl. Bit O of
address is masked with 0.

Unconditional branch. Adds current PC to value

sign-extended from 26-bit displacement to word
length, and transfers control to that value. Bit 0

of 26-bit displacement is masked with 0.

Byte load. Adds data of regl and data sign-
extended from 16-bit displacement to word length
to create 32-bit unsigned address. Byte data is
read from created address, sign-extended to word
length, and stored to reg2.

Halfword load. Adds data of regl and data sign-
extended from 16-bit displacement to word length
to create 32-bit unsigned address. Halfword data is
read from created 32-bit address, sign-extended to
word length, and stored to reg2. Bit 0 of 32-bit
unsigned address is masked with 0.

Word load. Adds data of regl and data sign-
extended from 16-bit displacement to word length
to create 32-bit unsigned address. Word data is
read from created address and stored to reg2. Bits 0

and 1 of 32-bit unsigned address are masked with 0.

Load to system register. Sets word data of reg2 to
system register specified by system register number
(reglID).

63

63

64

65

66

67

67

67

68

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (4/7)

Instructic?n Operand Format CY OV S Z Instruction function Page

mnemonic

MOV regl, reg2 | Data transfer. Copies and transfers word data of 69
regl to reg2.

MOV immb5, reg2 Il Data transfer. Copies and transfers value sign- 69
extended from 5-bit immediate value to word length,
to reg2.

MOVBSU - 1 Bit string transfer. Transfers source bit string to 70
destination string.

MOVEA imm16, regl, reg2 \% Add. Adds word data of regl and value sign- 71
extended from 16-bit displacement to word
length, and stores result to reg2.

MOVHI imm16, regl, reg2 \% Add. Adds word data of regl to word data 72
consisting of higher 16 bits (16-bit immediate) and
lower 16 bits (0), and stores result to reg2.

MUL regl, reg2 | Signed multiply. Multiplies word data of reg2 by 73
word data of regl (signed) and stores higher 32 bits
of result (doubleword length) to r30 and lower 32
bits to reg2.

MULF.S regl, reg2 VI Floating-point multiply. Multiplies single-precision 74
floating-point data of reg2 by single-precision
floating-point data of regl, reflects result on flags,
and stores result to reg2.

MULU regl, reg2 | Unsigned multiply. Multiplies word data of reg2 76
by word data of regl as unsigned data, and stores
higher 32 bits of result (doubleword length) to r30
and lower 32 bits to reg2.

NOP - I No operation. 89

NOT regl, reg2 | NOT. NOTs word data of regl (1's complement) 77
and stores result to reg2.

NOTBSU - I Transfer with NOT of bit string. NOTs source bit 78
string (inverts 1 and 0) and transfers result to
destination bit string.

OR regl, reg2 | OR. ORs word data of reg2 with word data of regl 79
and stores result to reg2.

ORBSU - I Transfer with OR of bit string. ORs source bit string 80
with destination bit string, and transfers result to
destination bit string.

ORI imm16, regl, reg2 \% OR. ORs word data of regl with value zero-extended 81
from 16-bit immediate value to word length, and
stores result to reg2.

ORNBSU - 1 Transfer with NOT OR of bit string. ORs NOTed 82

source bit string with destination bit string, and

transfers result to destination bit string.

137

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (5/7)

Instruction
) Operand
mnemonic

Format CY OV S Z

Instruction function

Page

OUT.B reg2, displ6 [regl]

OUT.H reg2, displ6 [regl]

OUT.W reg2, displ6 [regl]

RETI -

SAR regl, reg2

SAR imm5, reg2

SCHOBSU
SCHOBSD

SCH1BSU -
SCH1BSD

SETF imm5, reg2

SHL regl, reg2

138

\|

Vi

Port output. Adds data of regl and data sign-
extended from 16 bits to word length to create 32-bit
unsigned port address, and outputs data of lower

1 byte of general-purpose register reg2 to created
port address.

Port output. Adds data of regl and data sign-
extended from 16-bit displacement to word length

to create 32-bit unsigned port address, and outputs
data of lower 2 bytes of general-purpose register
reg2 to created port address. Bit 0 of 32-bit unsigned
address is masked with 0.

Port output. Adds data of regl and data sign-
extended from 16-bit displacement to word length

to create 32-bit unsigned port address, and outputs
word data of general-purpose register reg2 to
created port address. Bits 0 and 1 of 32-bit
unsigned port address are masked with 0.

Return from trap or interrupt routine. Restores

restore PC and PSW from system register, and
returns execution from trap or interrupt routine.
Arithmetic left shift. Arithmetically shifts to left
word data of reg2 by number specified by lower

5 bits or regl (copies value of MSB sequentially to
MSB), and writes result to reg2.

Arithmetic right shift. Arithmetically shifts to right

word data of reg2 by number specified by lower 5
bits of regl, and writes result to reg2.

Bit string O search. Searches surce bit string, stores
bit address 1 bit before 0 first found to r30 and r27,
and stores number of bits skipped until detection to
r29, and value resulting from subtraction of number
of skipped bit to r28.

Bit string 1 search. Searches source bit string, stores
bit address 1 bit before 1 first found to r30 and r27,
and stores number of bits skipped until detection to
r29, and value resulting from subtraction of number
of skipped bit to r28.

Set flag condition. Stores 1 to reg2 if condition
indicated by lower 4 bits of 5-bit immediate coincides
with condition flag; otherwise, stores 0 to reg2.
Logical left shift. Logically shifts to left word data

of reg2 by number specified by lower 5 bits of regl

(sends 0 to LSB side), and writes result to reg2.

83

83

83

84

85

85

86
86

88
88

90

92

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (6/7)

Instruction))
. Operand Format CY OV S Z Instruction function Page
mnemonic

SHL imm5, reg2 Il * 0 * * Logical left shift. Logically shifts to left word data of 92
reg2 by number specified by value zero-extended
from 5-bit immediate value to word length, and
writes result to reg2.

SHR reg2, reg2 | * 0 * * Logical right shift. Logically shifts to right word data 93
of reg2 by number specified by lower 5 bis of regl
(sends 0 to MSB side), and writes result to reg2.

SHR imm5, eg2 1 * 0 * * Logical right shift. Logically shifts to right word data 93
of reg2 by number specified by value zero-extended
from 5-bit immediate value to word length, and
writes result to reg2.

ST.B reg2, displ6 [regl] VI - — — — Byte store. Adds data of regl and data sign- 94
extended from 16-bit displacement to word length
to create 32-bit unsigned address, and stores data of
lower 1 byte of reg2 to created address.

ST.H reg2, displ6 [regl] VI - — — — Halfword store. Adds data of regl and data sign- 94
extended from 16-bit displacement value to word
length to create 32-bit unsigned address, and stores
data of lower 2 bytes of reg2 to created address. Bit
0 of 32-bit unsigned address is masked with 0.

ST.W reg2, displ6[regl] \Y| - — — — Word store. Adds data of regl and data sign- 94
extended from 16-bit displacement to word length to
create 32-bit unsigned address, and stores word data
of reg2 to created address. Bits 0 and 1 of 32-bit
unsigned address are masked with 0.

STSR regID, reg2 1 - — — — Store contents of system register. Sets contents of 95

system register specified by system register number
(reglD) to reg2.
SUB regl, reg2 | * * % x Subptract. Subtracts word data of regl from word 96
data of reg2, and stores result to reg2.
SUBF.S regl, reg2 VIl * 0 * * Subtract. Subtracts single-precision floating-point 97
data of regl from single-precision floating-point data
of reg2, reflects result on flags, and stores result to
reg2.
TRAP vector Il - — — — Software trap. Saves restore PC and PSW into 99
system register (to FEPC and FEPSW if EP flag of
PSW is 0; to EIPC and EIPSW if EP flag is 0), sets
exception code to ECR (to FECC and FEPSW if EP flag
of PSW is 1; to EICC if EP flag is 0), sets flags of PSW
(sets NP and ID flag and clears AE flag if EP flag of
PSW is 1; sets EP and ID flags and clears AE flag if
EP flag is 0), jumps to address of trap handler
corresponding to trap vector (0-31) specified by

vector, and starts exception processing.

139

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (7/7)

Instructic?n Operand Format CY OV S Z Instruction function Page

mnemonic

TRNC.SW regl, reg2 VIl - 0 * * Convert floating-point data to integer. Converts 101
single-precision floating-point data of regl to integer
data, reflects result on flags, and stores result to reg2.

XOR regl, reg2 | - 0 * * Exclusive OX. Exclusive-ORs word data of reg2 103
with word data of regl and stores result to reg2.

XORBSU - 1 - — — — Transfer with exclusive-OR of bit string. Exclusive- 104
ORs source bit string with destination bit string, and
transfers result to destination bit string.

XORI imm16, regl, reg2 \% - 0 * * Exclusive OR. Exclusive-ORs word data of regl with 105
value zero-extended from 16-bit immediate value to
word length, and stores result to reg2.

XORNBSU - 1 - — — — Transfer of NOT exclusive OR of bit string. 106

140

Exclusive-ORs NOTed source bit string with
destination bit string, and transfers result to

destination bit string.

APPENDIX B

Table B-1 Mnemonic List

INSTRUCTION LIST

Op Code Function Op Code Function
Load/store instructions Program control instructions
LD.B Load Byte IJMP Jump
LD.H Load Halfword JR Jump Relative
LD.W Load Word JAL Jump end Link
ST.B Store Byte BGT Branch on Greater than signed
ST.H Store Halfword BGE Branch on Greater than or Equal signed
ST.W Store Word BLT Branch on Less than signed
- - - - BLE Branch on Less than or Equal signed
Intege_r arl_thmetlc_ operation/logical BH Branch on Higher
operation mstrL-lctlons BNH Branch on Not Higher
(2-operand register) BL Branch on Lower
MoV Move BNL Branch on Not Lower
SuB Subtract BE Branch on Equal
ADD Add BNE Branch on Not Equal
cmP Compare BV Branch on Overflow
OR OR BNV Branch on No Overflow
AND AND . BN Branch on Negative
XOR Exclusive-OR BP Branch on Positive
NOT NQT . BC Branch on Carry
SHL Sh!ft Logfcal Léft BNC Branch on No Carry
SHR Sh!ft Lo.glcal F_€|gh.t BZ Branch on Zero
SAR ShIfF Arithmetic Right BNZ Branch on Not Zero
MUL M‘ulitlply BR Branch Always
pIv D|V|c_|e . NOP No Branch (No Operation)
MULU Multiply Unsigned
DIVU Divide Unsigned Bit string instructions
SCHOBSU Search Bit 0 Upward
(2-operand immediate) SCHOBSD Search Bit 0 Downward
MOV Move SCH1BSU Search Bit 1 Upward
ADD Add SCH1BSD Search Bit 1 Downward
CMP Compare MOVBSU Move Bit String Upward
SHL Shift Logical Left NOTBSU Not Bit String Upward
SHR Shift Logical Right ANDBSU AND Bit String Upward
SAR Shift Arithmetic Right ANDNBSU AND Not Bit String Upward
SETF Set Flag Condition ORBSU OR Bit String Upward
ORNBSU OR Not Bit String Upward
(3-operand) XORBSU Exclusive-OR Bit String Upward
ADDI Add XORNBSU Exclusive-OR Not Bit String Upward
MOVEA Add - - . -
ORI OR Floating-point 9perat|on instructions
ANDI AND CMPF.S Compare Floating Short _
XORI Exclusive-OR CVT.WS Convert Word Integgr to Short Floating
MOVHI Add CVT.SW Convert Short Floating to Word Integer
ADDF.S Add Floating Short
Input/output instructions SUBF.S Subtract Floating Short
IN.B Input Byte MULF.S Multiply Floating Short
IN.H Input Halfword DIVF.S Divide Floating Short
IN.W Input Word TRNC.SW Truncate Short Floating to Word Integer
ouT.B Output Byte . :
OUT H Output Halfword Special |nstruct|on_s
OUT.W Output Word LDSR Load System Regl_ster
STSR Store System Register
TRAP Trap
RETI Return from Trap or Interrupt
CAXI Compare and Exchange Interlocked
HALT Halt

141

APPENDIX B INSTRUCTION LIST

Table B-2 Instruction Set

Op code Instruction format Format
000000 MOV regl, reg2 |
000001 ADD regl, reg2 |
000010 SUB regl, reg2 |
000011 CMP regl, reg2 |
000100 SHL regl, reg2 [
000101 SHR regl, reg2 |
000110 IMP [regl] |
000111 SAR regl, reg2 |
001000 MUL regl, reg2

001001 DIV regl, reg2

001010 MULU regl, reg2
001011 DIVU regl, reg2

001100 OR regl, reg2

001101 AND regl, reg2

001111 NOT regl, reg2

010000 MOV imm5, reg2 Il
010001 ADD imm5, reg2 1]
010010 SETF immb5, reg2 Il
010011 CMP imm5, reg2 I
010100 SHL imm5, reg2 I
010101 SHR imm5, reg2 1]
010110 -

010111 SAR imm5, reg2 Il

011000 TRAP vector I}
011001 RETI Il
011010 HALT I
011011 -
011100 LDSR reg2, reglD 1
011101 STSR regID, reg2 Il
011110 -
011111 Bstr Il

100$$$$ Bcond disp9 I

101000 MOVEA imm16, regl, reg2 \Y
101001 ADDI imm16, regl, reg2 \Y%
101010 JR disp26 \%
101011 JAL disp26 \%
101100 ORI imm16, regl, reg2 \%
101101 ANDI imm16, regl, reg2 \Y%
101110 XORI imm16, regl, reg2 \%
101111 MOVHI imm16, regl, reg2 \%
110000 LD.B disp16 [regl], reg2 VI
110001 LD.H disp16 [regl], reg2 VI
110010 -

110011 LD.W disp16 [regl], reg2 \Y|
110100 ST.B reg2, disp16 [regl] VI
110101 ST.H reg2, disp16 [regl] VI
110110 -

110111 ST.W reg2, displ16 [regl] \Y|
111000 IN.B dips16 [regl], reg2 VI
111001 IN.H disp16 [regl], reg2 VI
111010 CAXI dipal6 [regl], reg2 VI
111011 IN.W disp16 [regl], reg2 VI
111100 OuUT.B reg2, disp16 [regl] VI
111101 OUT.H reg2, displ6 [regl] VI
111110 Fpp regl, reg2 i
111111 OUT,W reg2, displ6 [regl] \l

142

APPENDIX C OP CODE MAP

(a) Op code
bit 12..10
bit 15..13 0 1 2 3 4 5 6 7 Format
0 MOV ADD suB CMP SHL SHR IMP SAR
1 MUL DIV MULU DIVU OR AND XOR NOT I
2 MOV ADD SETF CMP SHL SHR SAR
3 TRAP RETI HALT LDSR STSR Bstr !
4 Bcond 1
5 MOVEA | ADDI JR JAL ORI ANDI XORI | MOVHI VIV
6 LD.B LD.H LD.W ST.B ST.H ST.W VI
7 IN.B IN.H CAXI INW | OUT.B | OUT.H Fpp OUT.W | VINVII
(b) Branch instruction (condition code)
bit 11..9
bit 12 0 1 2 3 4 5 6 7
0 BV BC/BL BZ/BE BNH BN BR BLT BLE
1 BNV BNC/BNL | BNZ/BNE BH BP NOP BGE BGT
(c) Bit string manipulation instruction (sub-op code)
bit 2..0
bit 4..3 0 1 2 3 4 5 6 7
0 SCHOBSU | SCHOBSD | SCH1BSU | SCH1BSD
1 ORBSU | ANDBSU | XORBSU | MOVBSU | ORNBSU | ANDNBSU | XORNBSU | NOTBSU
2
3

143

APPENDIX C OP CODE MAP

(d)

144

Floating-point operation instruction (sub-op code)

bit 28..26
bit 31..29 0 2 3 4 5 6 7
0 CMPF.S CVT.WS CVT.SW ADDF.S SUBF.S MULF.S DIVF.S
1 TRNC.SW

	COVER
	INTRODUCTION
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES

	CHAPTER 1 OVERVIEW
	1.1 Features
	1.2 Products Development

	CHAPTER 2 REGISTER SET
	2.1 Program Register Set
	2.1.1 General-purpose registers
	2.1.2 Program counter

	2.2 System Register Set
	2.2.1 Exception/ interrupt status saving registers (EIPC/ EIPSW)
	2.2.2 NMI/ duplexed exception status saving register (FEPC/ FEPSW)
	2.2.3 Exception source register (ECR)
	2.2.4 Program status word (PSW)
	2.2.5 Processor ID register (PIR)
	2.2.6 Task control word (TKCW)
	2.2.7 Cache control word (CHCW)
	2.2.8 Address trap register (ADTRE)
	2.2.9 System register number

	CHAPTER 3 DATA TYPES
	3.1 Data Types Supported
	3.1.1 Data type and addressing
	3.1.2 Integer
	3.1.3 Unsigned integer
	3.1.4 Bit string
	3.1.5 Single-precision floating-point data

	3.2 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	4.1 Memory and I/ O Map
	4.2 Addressing Mode
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET
	5.1 Instruction Format
	5.2 Instruction Outline
	5.3 Instruction Set
	5.4 Instruction Execution Clock Cycles
	5.4.1 Normal instruction
	5.4.2 Search bit string instructions
	5.4.3 Arithmetic bit string instructions

	CHAPTER 6 INTERRUPT AND EXCEPTION
	6.1 Exception Processing
	6.2 Interrupt Processing
	6.2.1 Maskable interrupt
	6.2.2 Non-maskable interrupt

	6.3 Returning from Exception/ Interrupt
	6.4 Priority
	6.4.1 Priorities of interrupts and exceptions
	6.4.2 Priorities of floating-point exceptions
	6.4.3 Interrupt execution timing

	CHAPTER 7 CACHE DUMP/ RESTORE FUNCTIONS
	CHAPTER 8 DEBUG SUPPORT FUNCTION
	CHAPTER 9 RESET
	9.1 Initialization
	9.2 Starting Up

	APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)
	APPENDIX B INSTRUCTION LIST
	APPENDIX C OP CODE MAP

