
V805TM

V810TM

V820TM

V821TM

V810 FAMILYTM

32-BIT MICROPROCESSOR

1© 1995

ARCHITECTURE

Document No. U10082EJ1V0UM00 (1st edition)
Date Published October 1995P
Printed in Japan

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once it has occurred. Environmental control must be

adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators

that easily build static electricity. Semiconductor devices must be stored and transported in an anti-

static container, static shielding bag or conductive material. All test and measurement tools

including work bench and floor should be grounded. The operator should be grounded using wrist

strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to

be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

V805, V810, V820, V821, V830, V851, V810 family, V850 family, and V800 series are trademarks of

NEC Corporation.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through

X/Open Company Limited.

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
“Standard”, “Special”, and “Specific”. The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program” for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard:Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices in “Standard” unless otherwise specified in NEC’s Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

M7 94.11

INTRODUCTION

Readers This manual is intended for users who understand the functions of the V810

family and wish to design application systems using this microprocessor.

Purpose This manual introduces the architecture of the V810 family to users, following

the organization described below.

Organization The V810 family User’s manuals consist of the hardware and architecture (this

manual) versions for each device.

 Hardware Architecture

Pin functions Register set

CPU functions Data type

Internal peripheral functions Address space

Instruction format and instruction set

Interrupt and exception

Reset

How to read this manual It is assumed that the reader of this manual has general knowledge in the fields

of electric engineering, logic circuits, and microcomputers.

To learn about the functions of the hardware,

—> Read "USER’S MANUAL–HARDWARE" of each device.

To learn about the detailed function of a specific instruction,

—> Read chapter 5 "INSTRUCTION FORMAT AND INSTRUCTION SET."

To learn about electrical specifications,

—> Refer to data sheet of each device.

To learn about the overall architecture of the V810 family,

—> Read this manual in sequential order.

For the V810 family, data consisting of 2 bytes is called a halfword, and data

consisting of 4 bytes is called a word.

Legend Data significance : Higher on left and lower on right

Active low : xxx (top bar over pin and signal names)

Memory map address : Top – high, bottom – low

Note : Footnote

Caution : Points to be noted

Remark : Supplementary explanation for main text

Numeric representation : binary xxxx or xxxxB

decimal xxxx

hexadecimal xxxxH

Related documents Suffix representing an exponent of 2 (Address space, memory capacity):

K (Kilo) = 210 = 1024

M (Mega) = 220 = 10242

G (Giga) = 230 = 10243

The related documents indicated in this publication may include preliminary

versions. However, preliminary versions are not marked as such.

Part Number Document Name Document No.

V805 Data Sheet ID-3292

V805 User’s Manual IEU-1371

V810 Data Sheet ID-3293

V810 User’s Manual IEU-1370

V805/V810 User’s Manual Hardware To be published

V820 Data Sheet ID-3301

User’s Manual IEU-852*

V821 User’s Manual Hardware U10077J*

CA732 User’s Manual Operation EEU-952*

(C compiler UNIXTM base

package) C language EEU-966*

Assembly EEU-953*

language

Remark Asterisks in the table indicate the document numbers of the

Japanese versions. Their English versions may not be

prepared or will be prepared soon.

- i -

CONTENTS

CHAPTER 1 OVERVIEW ... 1
1.1 Features .. 2

1.2 Products Development .. 3

CHAPTER 2 REGISTER SET .. 5
2.1 Program Register Set .. 6

2.1.1 General-purpose registers ... 6

2.1.2 Program counter ... 7

2.2 System Register Set .. 8

2.2.1 Exception/interrupt status saving registers (EIPC/EIPSW) .. 8

2.2.2 NMI/duplexed exception status saving register (FEPC/FEPSW) .. 8

2.2.3 Exception source register (ECR) .. 9

2.2.4 Program status word (PSW) .. 9

2.2.5 Processor ID register (PIR) ... 12

2.2.6 Task control word (TKCW) .. 13

2.2.7 Cache control word (CHCW) ... 14

2.2.8 Address trap register (ADTRE) ... 15

2.2.9 System register number ... 15

CHAPTER 3 DATA TYPES .. 17
3.1 Data Types Supported ... 17

3.1.1 Data type and addressing .. 18

3.1.2 Integer.. 19

3.1.3 Unsigned integer .. 19

3.1.4 Bit string .. 19

3.1.5 Single-precision floating-point data .. 20

3.2 Data Alignment ... 20

CHAPTER 4 ADDRESS SPACE ... 21
4.1 Memory and I/O Map .. 22

4.2 Addressing Mode .. 24

4.2.1 Instruction address ... 24

4.2.2 Operand address .. 27

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET .. 29
5.1 Instruction Format .. 29

5.2 Instruction Outline ... 31

5.3 Instruction Set ... 39

5.4 Instruction Execution Clock Cycles ... 107

5.4.1 Normal instruction .. 107

5.4.2 Search bit string instructions ... 110

5.4.3 Arithmetic bit string instructions .. 114

- ii -

CHAPTER 6 INTERRUPT AND EXCEPTION .. 117
6.1 Exception Processing .. 118

6.2 Interrupt Processing .. 119

6.2.1 Maskable interrupt .. 119

6.2.2 Non-maskable interrupt .. 121

6.3 Returning from Exception/Interrupt .. 122

6.4 Priority .. 123

6.4.1 Priorities of interrupts and exceptions .. 123

6.4.2 Priorities of floating-point exceptions ... 124

6.4.3 Interrupt execution timing .. 124

CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS .. 125

CHAPTER 8 DEBUG SUPPORT FUNCTION .. 129

CHAPTER 9 RESET ... 131
9.1 Initialization ... 131

9.2 Starting Up ... 131

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order) .. 133

APPENDIX B INSTRUCTION LIST .. 141

APPENDIX C OP CODE MAP .. 143

- iii -

LIST OF FIGURES

Fig. Title Page

2-1 Program Registers .. 6

2-2 System Registers .. 8

4-1 Memory Map .. 22

4-2 I/O Map .. 23

4-3 Relative Addressing (JR disp26/JAL disp26) ... 24

4-4 Relative Addressing (Bcond disp9) ... 25

4-5 Register Addressong (JMP [reg1]) .. 26

4-6 Based Addressing ... 27

7-1 Cache Configuration ... 125

7-2 Cache Dump Format .. 127

- iv -

LIST OF TABLES

Table Title Page

5-1 Load/Store Instructions .. 31

5-2 Integer Arithmetic Operation Instructions ... 32

5-3 Logical Operation Instructions ... 33

5-4 I/O Instructions .. 34

5-5 Program Control Instructions ... 35

5-6 Bit String Instructions ... 36

5-7 Floating-Point Operation Instructions ... 37

5-8 Special Instructions .. 38

5-9 Conditional Branch Instructions... 50

5-10 Condition Codes.. 91

5-11 Instruction Execution Clock Cycles ... 107

5-12 Execution Clock Cycles of Search Bit String Instructions .. 110

5-13 Execution Clock Cycles of Arithmetic Bit String Instructions ... 114

5-14 Boundary Condition of Arithmetic Bit String Instructions .. 115

6-1 Exception Codes ... 117

6-2 Instructions Aborted by Interrupt ... 117

6-3 Priorities of Interrupts and Exceptions ... 123

6-4 Priorities of Floating-Point Exceptions .. 124

9-1 Register Status after Reset ... 131

A-1 Instruction Mnemonics (alphabetical order) ... 134

B-1 Mnemonic List ... 141

B-2 Instruction Set ... 142

1

CHAPTER 1 OVERVIEW

CHAPTER 1 OVERVIEW

The V810 family consists of NEC’s RISC microprocessors using the V810 as the CPU core and is designed

for embedded control applications.

2

CHAPTER 1 OVERVIEW

1.1 Features

● High-performance 32-bit architecture for embedded control application

• 1K-byte cache memory

• Pipeline structure of 1 clock pitch

• 16-bit instructions (with some exceptions)

• Separate 32-bit address/data buses

• 32-bit general-purpose registers: 32

• 4G-byte linear address space

• Register/flag hazard interlocked by hardware

● Instructions ideal for various application fields

• Floating-point operation instructions (based upon IEEE754 data format)

• Bit string instructions

● 16 levels of high-speed interrupt responses

3

CHAPTER 1 OVERVIEW

1.2 Products Development

The V810 family is one of the V800 seriesTM and a group of products which use the RISC microprocessor V810

as its CPU core.

The product development shown in the following diagram is performed for the V800 series, enabling it to be

applied in various embedded control application fields. The V850 familyTM is a single-chip microprocessor for

control purposes while the V810 family is a microprocessor for data processing purposes. The V830 family, an

advanced high-speed version, is also available.

Products development

V810

V810 Family

V850 Family

V830 Family

V800 Series

V820 V82X

V805 V821

V851

V830 V83X

V85X

4

CHAPTER 1 OVERVIEW

[MEMO]

5

CHAPTER 2 REGISTER SET

CHAPTER 2 REGISTER SET

The register set of the V810 family can be classified into two types: program register set that is generally used

by the programmer, and system register set that is usually used by the OS (operating system). All registers are

32 bits wide.

6

CHAPTER 2 REGISTER SET

2.1 Program Register Set

2.1.1 General-purpose registers

Thirty-two general-purpose registers, r0 to r31, are available. All these registers can be used as data registers

or address registers.

Note, however, that r0 and r26 to r31 are implicitly used by instructions.

(1) Hardware-dependent registers

These registers are fixed to a certain value by the hardware,

or implicitly used by an instruction.

r0 : (zero register)

This register always holds 0.

r26 : (string destination start bit offset)

This register stores a bit offset in the word of the

destination operand of a bit string instruction. Bits 31

through 5 of this register are automatically cleared

before the instruction is executed. If interrupt processing

is executed, this register stores the offset value in the

resume word.

r27 : (string source start bit offset)

This register stores the bit offset in the word of the

source operand of a string instruction.

Bits 31 through 5 of the register are automatically

cleared before the instruction is executed. If interrupt

processing is executed, the register stores the offset

value in the resume word.

r28 : (string length register)

This register stores the number of bits for string

processing by a bit string instruction. If the processing

of the instruction is aborted by an interrupt, the

register holds the remaining length.

r29 : (string destination start address register)

This register holds a destination operand start word

address when a bit string transfer instruction is executed.

Bits 1 and 0 of the register are automatically cleared

to 0 before the instruction is executed. If the processing

of the instruction is aborted by an interrupt, the

register holds the resume start word address.

When a search instruction is executed, this register

holds the sum of the number of bits skipped. If the

processing is aborted by an interrupt, the register

holds the number of bits skipped before the processing

is aborted.

Fig. 2-1 Program Registers

31 0

r0 Zero Register

r1 Reserved for Address Generation

r2 Handler Stack Pointer (hp)

r3 Stack Pointer (sp)

r4 Global Pointer (gp)

r5 Text Pointer (tp)

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26 String Destination Bit Offset

r27 String Source Bit Offset

r28 String Length

r29 String Destination

r30 String Source

r31 Link Pointer (lp)

PC

7

CHAPTER 2 REGISTER SET

r30 : (string start address register)

This register holds the source operand start word address of a bit string instruction. If the processing

of the instruction is aborted by an interrupt, the register holds the resume word address. Bits 1 and

0 of the register are automatically cleared before the instruction is executed.

When the CAXI instruction is executed, this register holds the value to be set to the lock word.

When the MUL/MULU instruction is executed, the register holds the higher 32 bits of the result of

multiplication.

When the DIV/DIVU instruction is executed, the register holds the remainder of the result of division.

r31 : (link pointer)

This register implicitly stores the return destination address of the JAL instruction.

(2) Software-reserved registers

These registers are implicitly used by the assembler and compiler. When these registers are used as

variable registers, save the contents of the registers so that they are not destroyed, and later restore the

register contents.

For details, refer to the manual of the assembler/compiler.

r1 : (assembler-reserved register)

This is a working register for creating 32-bit immediate, and is implicitly used when the assembler

calculates an effective address.

r2 : (handler stack pointer)

This register is reserved as the stack pointer of the handler.

r3 : (stack pointer)

This register is reserved for stack frame creation when a function is called.

r4 : (global pointer)

This register is used to access a global variable in the data area.

r5 : (text pointer)

This register points to the beginning of the text area.

2.1.2 Program counter

The program counter (PC) indicates the address of the instruction currently executed by the program. Bit 0

of the PC is fixed to 0, and execution cannot branch to an odd address. The contents of the PC is initialized to

FFFFFFF0H at reset.

8

CHAPTER 2 REGISTER SET

2.2 System Register Set

The system registers control the status of the processor, hold exception/interrupt information, and manage

tasks. They are managed mainly by the OS.

Fig. 2-2 System Registers

EIPC

EIPSW

FEPC

FEPSW

ECR

PSW

PIR

TKCW

CHCW

ADTRE

2.2.1 Exception/interrupt status saving registers (EIPC/EIPSW)

EIPC and EIPSW are registers that save the current contents of the PC and PSW if an exception or interrupt

occurs. The contents of the PC are saved to EIPC, while the contents of the PSW are saved to EIPSW. Since

only one set each of EIPC and EIPSW are available, these registers must be saved by program if multiplexed

exception or interrupt is enabled.

Bit 0 of EIPC and bits 31 through 20, 11, and 10 of EIPSW are fixed to 0. The contents of the PC and PSW

are not saved to these EIPC and EIPSW, but to FEPC and FEPSW, if an exception occurs while the EP bit of the

PSW is set (duplexed exception or fatal exception), or when NMI occurs.

31 0

EIPC/EIPSW

2.2.2 NMI/duplexed exception status saving register (FEPC/FEPSW)

If NMI or duplexed exception (exception that occurs when EP = 1) occurs, the current contents of the PC and

PSW are saved to FEPC and FEPSW, respectively. The PC and PSW contents are saved to these registers in

case of an emergency. Therefore, if this happens, appropriate processing must be started immediately. Bits 0

of FEPC and bits 31 through 20, 11, and 10 of FEPSW are fixed to 0.

31 0

FEPC/FEPSW

9

CHAPTER 2 REGISTER SET

2.2.3 Exception source register (ECR)

The ECR register holds the source of an exception, maskable interrupt, or NMI that has occurred. The value

held by ECR is coded for each exception source (refer to CHAPTER 6 INTERRUPT AND EXCEPTION).

This register is a read-only register, and data cannot be written to it by using the LDSR instruction.

31 0

ECR

16 15

FECC EICC

Bit position Field Meaning

31-16 FECC Exception code in case of NMI/duplexed exception

15-0 EICC Exception code in case of interrupt/exception

2.2.4 Program status word (PSW)

The program status word (PSW) is a collection of flags that indicate the status of the program (result of

instruction execution) and the status of the processor. If a field of this register is changed by using the LDSR

instruction, the changed contents become valid immediately after execution of the LDSR instruction has been

completed.

31 0

PSW

1620191817 15 141312 1110 9 8 7 6 5 4 3 2 1

RFU
F
R
O

F
I
V

F
Z
D

F
O
V

F
U
D

F
P
R

I
3

I
2

I
1

I
0

N
P

E
P

A
E

I
D

C
Y

O
V

RFU S Z

Zero

Sign

Overflow

Carry

Floating Precision

Floating Underflow

Floating Overflow

Floating Zero Divide

Floating Invalid

Floating Reserved Operand

Interrupt Disable

Address Trap Enable

Exception Pending

NMI Pending

Interrupt Level

1 0

CHAPTER 2 REGISTER SET

Bit position Flag Meaning

31-20 RFU Reserved field (fixed to 0)

19-16 I3-I0 Interrupt Level

Maskable interrupt enable level

15 NP NMI Pending

Indicates that NMI processing is in progress. This flag is set when NMI is accepted, and NMI is

masked and multiplexed interrupt is disabled.

NP = 0 : NMI processing is not in progress

NP = 1 : NMI processing is in progress

14 EP Exception Pending

Indicates that exception, trap, or interrupt processing is in progress. This flag is set when

exceptional event occurs and masks interrupt.

EP = 0 : Exception/trap/interrupt processing is not in progress

EP = 1 : Exception/trap/interrupt processing is in progress

13 AE Address Trap Enable

Indicates whether address trap function is active

AE = 0 : Address trap function is not active

AE = 1 : Address trap function is active

12 ID Interrupt Disable

Indicates whether external interrupt request can be accepted

ID = 0 : Interrupt is enabled

ID = 1 : Interrupt is disabled

11, 10 RFU Reserved field (fixed to 0)

9 FRO Floating Reserved Operand

Indicates whether reserved operand exception occurs during floating-point operation

FRO = 0: Reserved operand exception does not occur

FRO = 1: Reserved operand exception occurs

8 FIV Floating Invalid

Indicates whether invalid operation occurs during floating-point operation

FIV = 0 : Invalid operation does not occur

FIV = 1 : Invalid operation occurs

7 FZD Floating Zero Divide

Indicates whether zero division occurs during floating-point operation

FZD = 0 : Zero division does not occur

FZD = 1 : Zero division occurs

6 FOV Floating OverFlow

Indicates whether overflow occurs during floating-point operation

FOV = 0 : Overflow does not occur

FOV = 1 : Overflow occurs

5 FUD Floating UnderFlow

Indicates whether underflow occurs during floating-point operation

FUD = 0 : Underflow does not occur

FUD = 1 : Underflow occurs

1 1

CHAPTER 2 REGISTER SET

Bit position Flag Meaning

4 FPR Floating Precision

Indicates whether degradation in precision occurs as result of floating-point operation

FPR = 0 : Precision does not degrade

FPR = 1 : Precision degrades

3 CY Carry

Indicates whether carry is generated as result of operation

CY = 0 : Carry is not generated

CY = 1 : Carry is generated

2 OV Overflow

Indicates whether overflow occurs during operation

OV = 0 : Overflow does not occur

OV = 1 : Overflow occurs

1 S Sign

Indicates whether result of operation is negative

S = 0 : Result of operation is positive or zero

S = 1 : Result of operation is negative

0 Z Zero

Indicates whether result of operation is zero

Z = 0 : Result of operation is not zero

Z = 1 : Result of operation is zero

1 2

CHAPTER 2 REGISTER SET

2.2.5 Processor ID register (PIR)

The processor ID register is provided to identify the CPU type number of the V810 family. This register is

“0000810XH” in each device to indicate the V810 family.

No data can be written to this register by using the LDSR instruction.

31 0

PIR

16 15

RFU

812 11 7 4 3

1 0 0 0 0 0 0 1 0 0 0 0 NECRV

"8" "1" "0"

Bit position Field Meaning

31-16 RFU Reserved field (fixed to 0)

15-4 PT Processor Type: Field indicating type number of CPU

3-0 NECRV NEC reserved: Reserved by NEC

1 3

CHAPTER 2 REGISTER SET

2.2.6 Task control word (TKCW)

The task control word is a register that controls floating-point operations. This register is a read-only register.

No data can be written to this register by using the LDSR instruction.

Provided for future interchangeability, this register is currently fixed.

31 0

TKCW

89 7 6 5 4 3 2 1

RD
R
D
I

F
P
T

F
U
T

F
V
T

F
Z
T

F
I
T

O
T
M

RFU

Bit position Field Meaning

31-9 RFU Reserved field (fixed to 0)

8 OTM Operand Trap Mask

Flag instructing whether trap occurs if reserved operand (indefinite and non-number) is found

during floating-point operation. With V810 family, this flag is fixed to 0 (trap occurs if reserved

operand is found)

7 FIT Floating Invalid Operation Trap Enable

Flag instructing whether trap occurs if invalid floating-point operation is executed. With V810

family, this flag is fixed to 1 (trap occurs if invalid operation is executed)

6 FZT Floating-Zero Divide Trap Enable

Flag instructing whether trap occurs if zero division occurs during floating-point operation. With

V810 family, this flag is fixed to 1 (trap occurs if zero division occurs)

5 FVT Floating-Overflow Trap Enable

Flag instructing whether trap occurs if overflow occurs during floating-point operation. With V810

family, this flag is fixed to 1 (trap occurs if overflow occurs)

4 FUT Floating-Underflow Trap Enable

Flag instructing whether trap occurs if underflow occurs during floating-point operation. With V810

family, this flag is fixed to 0 (trap does not occur even if underflow occurs)

3 FPT Floating-Precision Trap Enable

Flag instructing whether trap occurs if precision degrades as result of floating-point operation. With

V810 family, this flag is fixed to 0 (trap does not occurs even if precision degrades)

2 RDI Floating Rounding Control Bit for Integer Conversion

Flag instruction direction in which data is rounded when floating-point data is converted into integer

data. With V810 family, this flag is fixed to 0 (direction same as rounding direction specified by

RD field)

1, 0 RD Floating Rounding Control

2-bit flag specifying direction in which data is rounded as result of floating point operation. With

V810 family, this flag is fixed to RD (1:0) = 00 (toward nearest)

1 4

CHAPTER 2 REGISTER SET

2.2.7 Cache control word (CHCW)

This register controls the internal instruction cache (128 entries ✕ 8 bytes = 1K bytes). A cache memory

becomes valid when an instruction next to the LDSR instruction has been fetched. ICR, ICD, ICE, and ICC must

be exclusively set to 1.

31 0

CHCW

8 7 6 5 4 3 2 1

I
C
D

I
C
R

20 19

I
C
C

I
C
E

RFURFUCECASCEN

Bit position Field Meaning

31-8 SA Spill-Out Base Address

Specifies higher 24 bits of first address of dump/restore area. Higher 24 bits of address of dump/

restore area are SA, and lower 8 bits are 0. This flag is always 0 when it is read.

31-20 CEN Clear Entry Number

Specifies start entry number when cache is cleared. Nothing is executed if CEN • 128. This flag

is always 0 when it is read.

19-8 CEC Clear Entry Count

Specifies number of entries when cache is cleared. Number of entries is automatically set to 128

if CEC > 128. This flag is always 0 when it is read.

7, 6 RFU Reserved field (fixed to 0)

5 ICR Instruction Cache Restore

When this flag is set to 1, execution of restore is startedNote 1 . This flag is always 0 when it is read.

Operation is not guaranteed if this flag is set simultaneously with bit 4: ICD

4 ICD Instruction Cache Dump

When this flag is set to 1, execution of dump is startedNote 1. This flag is always 0 when it is read.

Operation is not guaranteed if this flag is set simultaneously with bit 5: ICR

3, 2 RFU Reserved field (fixed to 0)

1 ICE Instruction Cache Enable

Instruction cache is enabled when this flag is 1Note 2 and disabled when it is 0. Contents are saved

when instruction cache is disabled.

0 ICC Instruction Cache Clear

Instruction cache is cleared when this flag is set to 1Note 1. This flag is always 0 when it is read.

Instruction cache is cleared starting from entry number specified by CEN by number of entries

specified by CEC. If (CEN + CEC > 128), instruction cache is cleared by (128 - CEN) entries.

Notes 1. An interrupt that occurs during restore/dump/clear operation is internally held and is accepted after the

operation in progress is finished. The maskable interrupt is held internally only when the EP, NP, and ID flags

of PSW are all 0.

2. To make the cache active, make the ICHEEN signal active, and set the ICE bit of the cache control word.

1 5

CHAPTER 2 REGISTER SET

2.2.8 Address trap register (ADTRE)

This 32-bit register holds a trap address (TA) that is used to detect address coincidence with the PC and to

generate an address trap. Bit 0 of this register is fixed to 0.

2.2.9 System register number

Data is input to or output from a system register by specifying the following system register number with the

system register load/store instruction (LDSR or STSR):

Operand specification
No System register

LDSR STSR

0 EIPC : Exception/Interrupt PC ● ●

1 EIPSW : Exception/Interrupt PSW ● ●

2 FEPC : Fatal Error PC ● ●

3 FEPSW : Fatal Error PSW ● ●

4 ECR : Exception Cause Register — ●

5 PSW : Program Status Word ● ●

6 PIR : Processor ID Register — ●

7 TKCW : TasK Control Word — ●

8-23 Reserved

24 CHCW : CacHe Control Word ● ●

25 ADTRE : ADdress Trap Register for Execution ● ●

26-31 Reserved

— : Access disabled

● : Access enabled (cannot be set in some cases)

Reserved : Operation is not guaranteed if this is accessed.

31 0

TA 0ADTRE

1 6

CHAPTER 2 REGISTER SET

[MEMO]

1 7

CHAPTER 3 DATA TYPES

CHAPTER 3 DATA TYPES

3.1 Data Types Supported

The data types supported by the V810 family are as follows:

• Integer (8, 16, 32 bits)

• Unsigned integer (8, 16, 32 bits)

• Bit string

• Single-precision floating-point data (32 bits)

1 8

CHAPTER 3 DATA TYPES

3.1.1 Data type and addressing

Addressing of the V810 family is of little endian type. The format when data of fixed length exists in memory

is shown below.

(1) Byte

A byte is a contiguous 8-bit data that starts from any byte boundary. Each bit is numbered from 0 to 7.

Bit 0 is the LSB (Least Significant Bit), and bit 7 is the MSB (Most Significant Bit). A byte is specified by

its address A.

7 0

A

(2) Halfword

A halfword is a unit of contiguous 2-byte (16-bit) data that starts from any halfword boundary. Each bit

is numbered from 0 to 15. Bit 0 is the LSB (Least Significant Bit), and bit 15 is the MSB (Most Significant

Bit). A halfword is specified by its address A (with the lowest bit being 0), and takes two bytes: A and

A+1.

15 8 7 0

A+1 A

(3) Word/short real

Word/short real is a unit of contiguous 4-byte (32-bit) data that starts from any word boundary. Each bit

is numbered from 0 to 31. Bit 0 is the LSB (Least Significant Bit), and bit 31 is the MSB (Most Significant

Bit). Word/short real is specified by its address A (with the lower 2 bits being 0), and takes 4 bytes: A,

A+1, A+2, and A+3.

15 8 7 0

A+1 A

31 24 23 16

A+3 A+2

1 9

CHAPTER 3 DATA TYPES

3.1.2 Integer

With the V810 family, an integer is expressed as a binary number of 2’s complement and can be 8, 16, or 32

bits long. The significance of each bit increases as the bit number increases, with bit 0 assigned with the least

significance.

Data length Range

Byte, 8 bits –128 to +127

Halfword, 16 bits –32768 to +32767

Word, 32 bits –2147483648 to +2147483647

3.1.3 Unsigned integer

The above integer is data that can take a positive or negative value. In contrast, an unsigned integer is an integer

that is not negative. An unsigned integer is also expressed as a binary number and can be 8, 16, or 32 bits long.

The significance of each bit increases as the bit number increases, with bit 0 assigned with the least significance,

regardless of the length. Note, however, that no sign bit exists.

Data length Range

Byte, 8 bits 0 to 255

Halfword, 16 bits 0 to 65535

Word, 32 bits 0 to 4294967295

3.1.4 Bit string

A bit string is a unit of data whose bit length is variable from 0 to 232–1. Bit string data is specified by the following

three attributes:

• First word address A of string data (lower 2 bits are 0)

• Bit offset B in word of string data (0 to 31)

• Bit length M of string data (0 to 232–1)

With bit string data, the direction in which the address increases is called upward, and the direction in which

the address decreases is called downward.

2 0

CHAPTER 3 DATA TYPES

Attribute Upward manipulation Downward manipulation

First word address (bits 0 and 1 are 0) A A + 4

Bit offset in word (0 to 31) B D

Bit length (from 0 to 232–1) M M

3.1.5 Single-precision floating-point data

Data of this data type is 32 bits long and its representation format conforms to the single format of IEEE. Data

of this type consists of 1 mantissa sign bit, 8 bits of exponent (offset representation from bias value - 127), and

23 bits of mantissa (binary representation with integer omitted).

3.2 Data Alignment

With the V810 family, word data must be aligned at the word boundary (with the lower 2 bits of the address

being 0), and half word data must be aligned at the halfword boundary (with the lower 1 bit of the address being

0). Unless aligned, the lower bit(s) (2 bits in the case of word data and 1 bit in the case of halfword data) is

automatically masked 0 for access.

B

M-1

A+8

0
M

A+4 A (word boundary)

D

22 031 23

mantissa (23)exp (8)s

30

2 1

CHAPTER 4 ADDRESS SPACE

CHAPTER 4 ADDRESS SPACE

The V810 family supports 4G bytes of linear memory space and I/O space. The CPU outputs 32-bit addresses

to the memory and I/Os; therefore, the addresses are from 0 to 232–1.

Bit number 0 of each byte data is defined as the LSB (Least Significant Bit), and bit number 7 is the MSB (Most

Significant Bit). Unless otherwise specified, the byte data at the lower address side of data consisting of two or

more bytes is the LSB, and the byte data at the higher address side is the MSB (little endian).

Data consisting of 2 bytes is called a halfword, and data consisting of 4 bytes is called a word. In this manual,

the lower address of memory or I/O data of two or more bytes is shown on the right, and the higher address is

shown on the left, as follows:

...

..

.................................

7 0

15 8 7 0

15 8 0716232431

A (address)

A+1 A (address)

AA+1A+2A+3

Word/short real of address A

Halfword of address A

Byte of address A

2 2

CHAPTER 4 ADDRESS SPACE

4.1 Memory and I/O Map

Fig. 4-1 shows the memory map of the V810 family.

Fig. 4-1 Memory Map

Note For details, refer to Table 6-1 Exception Codes.

General use

00000000H

FFFFFE00H
FFFFFDFFH

FFFFFFFFH

Interrupt handler tableNote

2 3

CHAPTER 4 ADDRESS SPACE

Fig. 4-2 shows the I/O map of the V810 family.

Fig. 4-2 I/O Map

General use

00000000H

FFFFFFFFH

2 4

CHAPTER 4 ADDRESS SPACE

4.2 Addressing Mode

Two types of addresses are generated for the V810 family – the instruction address used by instructions

performing branching and the operand address using instructions accessing data.

4.2.1 Instruction address

The instruction address is determined by the contents of the program counter (PC) and is automatically

incremented (+2) according to the byte number of the instruction fetched each time instructions are executed.

When branch instructions are executed, branch destination addresses are set in the PC by the following

addressing:

(1) Relative addressing (PC relative)

9 or 26 bit data (displacement: disp) encoded with instruction signs are added to the program counter

(PC). At this time, the displacement is taken as 2’s complement data, and bit 8 and bit 25 become sign

bits.

The Bcond disp9, JR disp26, and JAL disp26 instructions are used in this addressing.

Fig. 4-3 Relative Addressing (JR disp26/JAL disp26)

031

0PC

031 26 25

0disp26Sign-extended

031

0

Manipulated memory

PC

2 5

CHAPTER 4 ADDRESS SPACE

Fig. 4-4 Relative Addressing (Bcond disp9)

031

0PC

08931

0S disp9Sign-extended

031

0

Manipulated memory

PC

2 6

CHAPTER 4 ADDRESS SPACE

(2) Register addressing (Register indirect)

Addressing which transfers the contents of the general registers (r0 to r31) specified by instructions to

the program counter (PC).

The JMP [reg1] instruction is used in this addressing.

Fig. 4-5 Register Addressing (JMP [reg1])

031

m 0PC

031

0

Manipulated memory

PC

2 7

CHAPTER 4 ADDRESS SPACE

4.2.2 Operand address

The following methods are available for accessing registers and memories used in the execution of instructions:

(1) Register addressing

Addressing which accesses, as operands, general registers specified by the general register specification

field. In this addressing, instructions with operand formats reg1 or reg2 are used.

(2) Immediate addressing

Addressing which contains 5-bit data and 16-bit data for manipulation in their instruction codes. In this

addressing, instructions with operand formats imm5 or imm16 are used.

(3) Based addressing

Addressing in which the contents of the general registers specified by the addressing specification code

in the instruction word and the 16-bit displacement add up to become the operand address in order to

address the memory for manipulation. In this addressing, instructions with operand format disp16 [reg1]

is used.

Fig. 4-6 Based Addressing
031

0reg1

031 16 15

0disp16Sign-extended

Manipulated memory

2 8

CHAPTER 4 ADDRESS SPACE

[MEMO]

29

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

5.1 Instruction Format

The V810 family has two types of instruction formats: 16-bit and 32-bit formats. The 16-bit instructions are binary

operation, control, and branch instructions, and the 32-bit instructions are load/store, I/O manipulation, 16-bit

immediate, jump and link, and extended instructions.

Some instructions have an unused field, which is reserved for future expansion and must be fixed to 0.

An instruction is actually stored in memory as follows:

• Lower part of each instruction (including bit 0) -> lower address side

• Higher part of each instruction (including bit 15 or 32) -> higher address side

(1) reg-reg instruction format (Format I)

An instruction in this format has a 6-bit op code field and two general-purpose register specification fields

to specify an operand. This format applies to a 16-bit instruction.

15 0

reg2

10 9 5 4

reg1opcode

(2) imm-reg instruction format (Format II)

An instruction in this format has a 6-bit op code field, a 5-bit immediate field, and a general-purpose

register specification field. This format applies to a 16-bit instruction.

15 0

reg2

10 9 5 4

immopcode

(3) Conditional branch instruction format (Format III)

An instruction in this format has a 3-bit op code field, a 4-bit condition code, and a 9-bit branch

displacement field (the least significant bit is 0, however). This format applies to a 16-bit instruction.

015

disp 0

91312 8

condopcode

30

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(4) Middle-distance jump instruction format (Format IV)

An instruction in this format is a middle-distance 32-bit branch instruction that has a 6-bit op code field

and a 26-bit displacement (the least significant bit is 0, however).

15 16

disp 0

0 3110 9

opcode

(5) 3-operand instruction format (Format V)

An instruction in this format is a 32-bit instruction that has a 6-bit op code field, two general-purpose

register specification fields, and a 16-bit immediate field.

15 16

imm

0 3110 9 5 4

opcode reg2 reg1

(6) Load/store instruction format (Format VI)

An instruction in this format is a 32-bit instruction that has a 6-bit op code field, two general-purpose

register specification fields, and a 16-bit displacement.

15 16

disp

0 3110 9 5 4

opcode reg2 reg1

(7) Extended instruction format (Format VII)

An instruction in this format is a 32-bit instruction that has a 6-bit op code field, two general-purpose

register specification fields, and a 6-bit sub-op code field.

15 1626 25

RFU

0 315 410 9

opcode reg2 reg1 sub-opcode

31

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

5.2 Instruction Outline

(1) Load/store instructions

The load/store instructions transfer data from the memory to the register.

Table 5-1 Load/Store Instructions

Mnemonic Function

LD.B Load Byte

LD.H Load Halfword

LD.W Load Word

ST.B Store Byte

ST.H Store Halfword

ST.W Store Word

32

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(2) Integer arithmetic operation instructions

The integer arithmetic operation instructions perform addition, subtraction, multiplication, and division,

as well as data transfer, and data comparison between registers.

Table 5-2 Integer Arithmetic Operation Instructions

Mnemonic Function

MOV Move

MOVHI Add

ADD Add

ADDI Add

MOVEA Add

SUB Subtract

MUL Multiply

MULU Multiply Unsigned

DIV Divide

DIVU Divide Unsigned

CMP Compare

SETF Set Flag Condition

33

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(3) Logical operation instructions

These instructions consist of the logical operation and shift instructions. The shift instructions consist

of the arithmetic shift and logical shift.

Several bits can be shifted in one clock using the barrel shifter.

Table 5-3 Logical Operation Instructions

Mnemonic Function

OR OR

ORI OR

AND AND

ANDI AND

XOR Exclusive-OR

XORI Exclusive-OR

NOT NOT

SHL Shift Logical Left

SHR Shift Logical Right

SAR Shift Arithmetic Right

34

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(4) I/O instructions

The I/O instructions perform data transfer between I/O and registers.

Table 5-4 I/O Instructions

Mnemonic Function

IN.B Input Byte

IN.H Input Halfword

IN.W Input Word

OUT.B Output Byte

OUT.H Output Halfword

OUT.W Output Word

35

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(5) Program control instructions (branch instructions)

The program control instructions consist of unconditional branch instructions and conditional branch

instructions which change the control according to the condition of the flag. The control of the program

can be shifted to an address specified by the program control instruction.

Table 5-5 Program Control Instructions

Mnemonic Function

JMP Jump

JR Jump Relative

JAL Jump and Link

BGT Branch on Greater than signed

BGE Branch on Greater than or Equal signed

BLT Branch on Less than signed

BLE Branch on Less than or Equal signed

BH Branch on Higher

BNH Branch on Not Higher

BL Branch on Lower

BNL Branch on Not Lower

BE Branch on Equal

BNE Branch on Not Equal

BV Branch on Overflow

BNV Branch on No Overflow

BN Branch on Negative

BP Branch on Positive

BC Branch on Carry

BNC Branch on No Carry

BZ Branch on Zero

BNZ Branch on Not Zero

BR Branch Always

NOP No Branch (No Operation)

36

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(6) Bit string instructions

The bit string instructions perform bit search, transfer, and logical operation transfer for any bit length

in the memory space.

Table 5-6 Bit String Instructions

Mnemonic Function

SCH0BSU Search Bit 0 Upward

SCH0BSD Search Bit 0 Downward

SCH1BSU Search Bit 1 Upward

SCH1BSD Search Bit 1 Downward

MOVBSU Move Bit String Upward

NOTBSU NOT Bit String Upward

ANDBSU AND Bit String Upward

ANDNBSU AND Not Bit String Upward

ORBSU OR Bit String Upward

ORNBSU OR Not Bit String Upward

XORBSU Exclusive-OR Bit String Upward

XORNBSU Exclusive-OR Not Bit String Upward

37

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(7) Floating-point operation instructions

The floating-point operation instruction performs the addition, subtraction, multiplication, and division of

single precision floating-point data (32 bits), comparisons, and mutual conversion of integer data and

floating-point data.

Table 5-7 Floating-Point Operation Instructions

Mnemonic Function

CMPF.S Compare Floating Short

CVT.WS Convert Word Integer to Short Floating

CVT.SW Convert Short Floating to Word Integer

ADDF.S Add Floating Short

SUBF.S Subtract Floating Short

MULF.S Multiply Floating Short

DIVF.S Divide Floating Short

TRNC.SW Truncate Short Floating to Word Integer

38

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(8) Special instructions

This section lists the following special instructions, which are not included in the previous categories.

Table 5-8 Special Instructions

Mnemonic Function

LDSR Load System Register

STSR Store System Register

TRAP Trap

RETI Return from Trap or Interrupt

CAXI Compare and Exchange Interlocked

HALT Halt

39

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

5.3 Instruction Set

Example of instruction description

Meaning of instructionMnemonic of instruction

Instruction format Indicates format in which the instruction is to be described, and the operand of the

instruction. The symbols used for operand description are as follows:

Symbol Meaning

reg1 General-purpose register (used as source register)

reg2 General-purpose register (mainly used as destination register.

Some registers are also used as source registers)

imm5 5-bit immediate

imm16 16-bit immediate

disp9 9-bit displacement

disp16 16-bit displacement

disp26 26-bit displacement

regID System register number

vector adr Trap: Trap handler address corresponding to vector

Operation Indicates the function of the instruction. The symbols used are as follows:

Symbol Meaning

<- Substitution

|| Bit connection

GR [x] General-purpose register x

SR [x] System register x

sign-extend (x) Extends sign of value x to word length

zero-extend(x) Zero-extends value x to word length

converted (x) Converts type of value x (rounding direction depends on TKCW)

truncate (x) Converts type of value x (rounding direction is 0)

Load-Memory (x, y) Reads data of size y from address x

Store-Memory (x, y, z) Writes data y of size z to address x

Input-Port (x, y) Reads data of size y from port address x

Output-Port (x, y, z) Writes data y of size z to port address x

adr 32-bit unsigned address

40

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Format Indicates the symbol of the instruction format.

Op code Indicates the op code of the instruction in the bit field. If the instruction has two or more

codes, part of the field may be described. “–” indicates a field other than the op code

field.

Flag Indicates the operations of the flags.

CY – <- Not affected

OV 0 <- Affected to 0

S 1 <- Affected to 1

Z –

If the instruction is a floating-point instruction, the operations of the flags dedicated to

floating-point data are also shown.

FRO –

FIV –

FZD –

FOV –

FUD –

FPR –

Instruction Indicates the function of the instruction.

Remarks Explains the operation of the instruction.

Supplement Provides supplemental information on the instruction.

Exception Explains exceptions that may occur as a result of executing the instruction.

Note Explains points to be noted on the V810 family.

41

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

AddADD

Instruction format (1) ADD reg1, reg2

(2) ADD imm5, reg2

Operation (1) GR [reg2] <- GR [reg2] + GR [reg1]

(2) GR [reg2] <- GR [reg2] + sign-extend (imm5)

Format (1) Format I

(2) Format II

Op code 15 10 9 5 4 0

(1) 000001 reg2 reg1

15 10 9 5 4 0

(2) 010001 reg2 imm5

Flag CY 1 if carry occurs from MSB; otherwise, 0

OV 1 if Integer-Overflow occurs; otherwise, 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise; 0

Instruction (1) ADD Add Register

(2) ADD Add Immediate (5-bit)

Remarks (1) Adds the word data of general-purpose register reg1 and reg2, and stores the result

in general-purpose register reg2. The contents of general-purpose register reg1

are not affected.

(2) Adds the value sign-extended to word length from 5-bit immediate data to the word

data of general-purpose register reg2, and stores the result in general-purpose

register reg2.

Exception None

42

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Add Floating ShortADDF.S

Instruction format ADDF.S reg1, reg2

Operation GR [reg2] <- GR [reg2] + GR [reg1]

Format Format VII

Op code 15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 000100 RFU

Flag CY 1 if GR [reg2] is negative; otherwise, 0

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [REG2] is 0; otherwise, 0

FRO 1 if operand is denormal number, non-number (NaN), and indefinite;

otherwise, not affected

FIV –

FZD –

FOV 1 if result of operation is greater than maximum normalized number that

can be expressed; otherwise, not affected

FUD 1 if result of operation is less than minimum (absolute value) normalized

number that can be expressed; otherwise, not affected

FPR 1 if degradation in precision is detected; otherwise, not affected

Instruction ADDF.S Add Floating Short

Remarks Adds the single-precision floating-point data of general-purpose registers reg1 and

reg2, reflects the result on the flags, and stores the result into general-purpose register

reg2. Of the flags, the statuses of CY, OV, S, and Z are directly determined by the

execution result of this instruction. The other floating-point data flags are not affected

unless a given condition is satisfied, and hold the values determined before this

instruction has been executed.

The S flag has the same value as that of the CY flag.

If the single-precision floating-point data of general-purpose registers reg1 and reg2 are

equal in absolute value but different in sign, the sign of the result (zero) is determined

depending on the rounding mode. Because the rounding mode of the V810 family is

“Toward nearest”, the result is “positive zero”.

Exception • Floating-point reserved operand exception

• Floating-point overflow exception

43

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Note If the specified single-precision floating-point data is a denormal number, non-number,

or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO

flag is set, a trap occurs, and control is transferred to the exception processing handler.

In this case, general-purpose register reg2 and the other flags are not affected. If the

result of operation is greater than the maximum normalized number that can be

expressed, the floating-point overflow exception occurs. As a result, the FOV flag is set,

a trap occurs, and control is transferred to the exception processing handler. In this

case, the result of operation having a corrected exponent is stored to general-purpose

register reg2.

If the result of operation is less than the minimum (absolute value) normalized number

that is not zero and can be expressed, the FUD flag is set, but a trap does not occur

and control is not transferred to the exception processing handler. In this case, zero

is stored to general-purpose register reg2.

If degradation in precision occurs as a result of rounding after conversion, the FPR flag

is set, but control is not trapped to the exception processing handler. In this case, the

result of operation having the rounded mantissa is stored to general-purpose register

reg2.

44

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Add ImmediateADDI

Instruction format ADDI imm16, reg1, reg2

Operation GR [reg2] <- GR [reg1] + sign-extend (imm16)

Format Format V

Op code 15 10 9 5 4 0 31 16

101001 reg2 reg1 imm16

Flag CY 1 if carry occurs from MSB; otherwise, 0

OV 1 if Integer-Overflow occurs; otherwise, 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise; 0

Instruction ADDI Add Immediate (16-bit)

Remarks Adds the value sign-extended from 16-bit immediate data to word length and the word

data of general-purpose register reg1, and stores the result in general-purpose register

reg2. The contents of general-purpose register reg1 are not affected.

Exception None

45

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

AndAND

Instruction format AND reg1, reg2

Operation GR [reg2] <- GR [reg2] AND GR [reg1]

Format Format I

Op code 15 10 9 5 4 0

001101 reg2 reg1

Flag CY –

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction AND And

Remarks ANDs the word data of general-purpose register reg2 with the word data of general-

purpose register reg1, and stores the result in general-purpose register reg2. The

contents of general-purpose register reg1 are not affected.

Exception None

46

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

And Bit String UpwardANDBSU

Instruction format ANDBSU

Operation destination <- destination AND source

Format Format II

Op code 15 10 9 5 4 0

011111 reg2 01001

Flag CY –

OV –

S –

Z –

Instruction ANDBSU And Bit String Upward

Remarks ANDs the source bit string specified by general-purpose registers r30 (source word

address), r27 (bit offset in source word), and r28 (string length) with the destination bit

string specified by general-purpose registers r29 (destination word address) and r26 (bit

offset in destination word), and transfers the result to the destination bit string. Transfer

is carried out from the lower address (first address) toward the higher address (end

address).

Supplement General-purpose registers r26 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use

r26 Bit offset in destination word

r27 Bit offset in source word

r28 String length

r29 Destination word address

r30 Source word address

Exception None

47

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

And ImmediateANDI

Instruction format ANDI imm16, reg1, reg2

Operation GR [reg2] <- GR [reg1] AND zero-extend (imm16)

Format Format V

Op code 15 10 9 5 4 0 31 16

101101 reg2 reg1 imm16

Flag CY –

OV 0

S 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction ANDI And Immediate (16-bit)

Remarks ANDs the word data of general-purpose register reg1 with the value zero-extended from

the 16-bit immediate data to word length, and stores the result in general-purpose

register reg2. The contents of general-purpose register reg1 are not affected.

Exception None

48

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

And Not Bit String UpwardANDNBSU

Instruction format ANDNBSU

Operation destination <- destination AND (NOT source)

Format Format II

Op code 15 10 9 5 4 0

011111 reg2 01101

Flag CY –

OV –

S –

Z –

Instruction ANDNBSU And Not Bit String Upward

Remarks NOTs the source bit string specified by general-purpose registers r30 (source word

address), r27 (bit offset in source word), and r28 (string length), ANDs the result with

the destination bit string specified by general-purpose registers r29 (destination word

address) and r26 (bit offset in destination word), and transfers the result of the AND to

the destination bit string. Transfer is carried out from the lower address (first address)

toward the higher address (end address).

Supplement General-purpose registers r26 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use

r26 Bit offset in destination word

r27 Bit offset in source word

r28 String length

r29 Destination word address

r30 Source word address

Exception None

49

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Branch on ConditionBcond

Instruction format Bcond disp9

Operation if condition are satisfied

then PC <- PC + (sign-extend) disp9

Format Format III

Op code 15 9 8 0

 100$$$$ disp9 0

$$$$ field indicates a condition (refer to Table 5-9).

Flag CY –

OV –

S –

Z –

Instruction Bcond Branch on Condition Code with 9-bit displacement

Remarks Tests the condition flag specified by the instruction. If the condition is satisfied, sets

the value resulting from adding the current PC contents and the value sign-extended

from 9-bit displacement to word length to the PC and transfers control. Bit 0 of the 9-

bit displacement is masked with 0. The current PC contents used for the calculation

is the address of the first byte of the Bcond instruction itself; therefore, if the displacement

value is 0, the branch destination is this instruction itself.

Exception None

50

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-9 Conditional Branch Instructions

Instruction Condition code Condition flag status Branch condition

Integer BGT 1111 ((S xor OV) or Z) = 0 Greater than signed

BGE 1110 (S xor OV) = 0 Greater than or equal signed

BLT 0110 (S xor OV) = 1 Less than signed

BLE 0111 ((S xor OV) or Z) = 1 Less than or equal signed

Unsigned BH 1011 (CY or Z) = 0 Higher (Greater than)

integer BNL 1001 CY = 0 Not lower (Greater than or equal)

BL 0001 CY = 1 Lower (Less than)

BNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

Common BE 0010 Z = 1 Equal

BNE 1010 Z = 0 Not equal

Others BV 0000 OV = 1 Overflow

BNV 1000 OV = 0 No overflow

BN 0100 S = 1 Negative

BP 1100 S = 0 Positive

BC 0001 CY = 1 Carry

BNC 1001 CY = 0 No carry

BZ 0010 Z = 1 Zero

BNZ 1010 Z = 0 Not zero

BR 0101 – Always (unconditional)

NOP 1101 – Not Always (does not branch)

51

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Compare and Exchange InterlockedCAXI

Instruction format CAXI disp16 [reg1], reg2

Operation locked

adr <- GR [reg1] + (sign-extend) disp16

tmp <- Load-Memory (adr, Word)

if GR [reg2] = tmp (compare; result <- GR [reg2] – tmp)

then Store-Memory (adr, GR [30], Word)

GR [reg2] <- tmp

else Store-Memory (adr, tmp, Word)

GR [reg2] <- tmp

unlocked

Format Format VI

Op code 15 10 9 5 4 0 31 16

111010 reg2 imm5 disp16

Flag CY 1 if borrow occurs from MSB as result of comparison; otherwise, 0

OV 1 if Integer-Overflow occurs as result of comparison; otherwise, 0

S 1 if result of comparison is negative; otherwise, 0

Z 1 if result of comparison is 0; otherwise, 0

Instruction CAXI Compare and Exchange Interlocked

Remarks This instruction is to synchronize processors in a multi-processor system, and the data

specified by disp16 [reg1] is to establish synchronization (for example, lock word).

The status before this instruction is executed is as follows:

New lock word to be set GR [30]

Lock word previously read GR [reg2]

Lock word Word data of address specified by GR [reg1]

+ (sign-extend) disp16. Bits 0 and 1 of address are

masked with 0

In this status, the CAXI instruction performs the following operations:

(1) Locks the bus to prevent the other processor from accessing the bus.

(2) Fetches the lock word.

(3) Compares the value of the fetched lock word with the value of the previously read

lock word, and reflects the result of comparison on flags.

(4) If both the lock words coincide, it means that the status has not been changed from

the status in which previous access was made (the program of the other processor

is not locked for accessing). Since the status is changed as a result of executing

this CAXI instruction, set a new lock word to be set (GR [30]).

52

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

(5) If both the lock words do not coincide, it means that the status has been changed

(the program of the other processor is locked for accessing). To check the status

of the lock word, set that lock word to GR [reg2].

(6) Releases the bus lock.

Exception None

53

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

CompareCMP

Instruction format (1) CMP reg1, reg2

(2) CMP imm5, reg2

Operation (1) result <- GR [reg2] – GR [reg1]

(2) result <- GR [reg2] – sign-extend (imm5)

Format (1) Format I

(2) Format II

Op code 15 10 9 5 4 0

(1) 000011 reg2 reg1

15 10 9 5 4 0

(2) 010011 reg2 imm5

Flag CY 1 if borrow occurs from MSB; otherwise, 0

OV 1 if Integer-Overflow occurs; otherwise, 0

S 1 if result is negative; otherwise, 0

Z 1 if result is 0; otherwise, 0

Instruction (1) CMP Compare Register

(2) CMP Compare Immediate (5-bit)

Remarks (1) Compares the word data of general-purpose register reg2 with the word data of

general-purpose register reg1, and indicates the result to the condition flag. The

comparison is made by subtracting the contents of general-purpose register reg1

from the word data of general-purpose register reg2. The contents of general-

purpose registers reg1 and reg2 are not affected.

(2) Compares the word data of general-purpose register reg2 with the value sign-

extended from the 5-bit immediate data to word length, and indicates the result to

the condition flag. The comparison is made by subtracting the value sign-extended

from the 5-bit immediate data to word length from the word data of general-purpose

register reg2. The contents of general-purpose register reg2 are not affected.

Exception None

54

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Compare Floating ShortCMPF.S

Instruction format CMPF.S reg1, reg2

Operation result <- GR [reg2] –GR [reg1]

Format Format VII

Op code 15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 000000 RFU

Flag CY 1 if result of operation is negative; otherwise, 0

OV 0

S 1 if result of operation is negative; otherwise, 0

Z 1 if result of operation is 0; otherwise, 0

FRO 1 if operand is denormal number, non-number (NaN), and indefinite;

otherwise, not affected

FIV –

FZD –

FOV –

FUD –

FPR –

Instruction CMPF.S Compare Floating Short

Remarks Compares the single-precision floating-point data of general-purpose registers reg1 and

reg2, and indicates the result with the flags. The comparison is carried out by subtracting

the floating-point data of general-purpose register reg1 from the floating-point data of

general-purpose register reg2. The contents of both the general-purpose registers are

not affected. Of the flags, the statuses of CY, OV, S, and Z are directly determined by

the execution result of this instruction. The other floating-point data flags are not

affected unless a given condition is satisfied, and hold the values determined before this

instruction has been executed.

The S flag has the same value as the CY flag.

Exception • Floating-point reserved operand exception

Note If the specified single-precision floating-point data is a denormal number, non-number,

or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO

flag is set, a trap occurs, and control is transferred to the exception processing handler.

In this case, the other flags are not affected.

55

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Convert Short Floating to Word IntegerCVT.SW

Instruction format CVT.SW reg1, reg2

Operation GR [reg2] <- convert (GR [reg1])

Format Format VII

Op code 15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 000011 RFU

Flag CY –

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

FRO 1 if GR [reg2] is denormal number, non-number (NaN), and indefinite;

otherwise, not affected

FIV 1 if invalid operation occurs; otherwise, not affected

FZD –

FOV –

FUD –

FPR 1 if degradation in precision is detected; otherwise, not affected

Instruction CVT.SW Convert Short Floating to Word Integer

Remarks Converts the single-precision floating-point data of general-purpose register reg1 into

integer data, indicates the result with the flags, and stores the result to general-purpose

register reg2. Of the flags, the statuses of CY, OV, S, and Z are directly determined

by the execution result of this instruction. The other floating-point data flags are not

affected unless a given condition is satisfied, and hold the values determined before this

instruction has been executed.

Exception • Floating-point reserved operand exception

• Floating-point invalid operation exception

56

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Note If the specified single-precision floating-point data is a denormal number, non-number,

or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO

flag is set, a trap occurs, and control is transferred to the exception processing handler.

In this case, general-purpose register reg2 and the other flags are not affected.

If the result of operation is a word-length integer and cannot be expressed in a given

range, the invalid floating-point operation exception occurs. As a result, the FIV flag

is set, a trap occurs, and control is transferred to the exception processing handler. In

this case, general-purpose register reg2 and the other flags are not affected.

If degradation in precision occurs as a result of rounding after conversion, the FPR flag

is set, but control is not trapped to the exception processing handler. In this case, the

result of operation having the rounded mantissa is stored to general-purpose register

reg2.

57

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Convert Word Integer to Short FloatingCVT.WS

Instruction format CVT.WS reg1, reg2

Operation GR [reg2] <- convert (GR [reg1])

Format Format VII

Op code 15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 000010 RFU

Flag CY 1 if GR [reg2] is negative; otherwise, 0

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [REG2] is 0; otherwise, 0

FRO –

FIV –

FZD –

FOV –

FUD –

FPR 1 if degradation in precision is detected; otherwise, not affected

Instruction CVT.WS Convert Word Integer to Short Floating

Remarks Converts the integer data of general-purpose register reg1 into single-precision floating-

point data, indicates the result with the flags, and stores the result in general-purpose

register reg2. Of the flags, the statuses of CY, OV, S, and Z are directly determined

by the result of executing this instruction. The other floating-point data flags are not

affected unless a given condition is satisfied, and hold the values determined before this

instruction has been executed.

The S flag has the same value as the CY flag.

Exception None

Note If degradation in precision occurs as a result of rounding after conversion, the FPR flag

is set, but control is not trapped to the exception processing handler. In this case, the

result of operation having the rounded mantissa is stored to general-purpose register

reg2.

58

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

DivideDIV

Instruction format DIV reg1, reg2

Operation GR [30] <- GR [reg2] MOD GR [reg1] (signed)

GR [reg2] <- GR [reg2] ÷ GR [reg1] (signed)

Format Format I

Op code 15 10 9 5 4 0

001001 reg2 reg1

Flag CY –

OV 1 if Integer-Overflow occurs; otherwise, 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise; 0

Instruction DIV Divide

Remarks Divides the word data of general-purpose register reg2 by the word data of general-

purpose register reg1 (signed), and stores the quotient in general-purpose register reg2

and the remainder in general-purpose register r30, respectively. Division is carried out

so that the sign of the remainder matches the sign of the dividend. The contents of

general-purpose register 1 are not affected. An overflow is set if the maximum value

(80000000H) is divided by –1 (FFFFFFFFH). At this time, the negative maximum value

is stored in general-purpose register reg2, and 0 is stored in general-purpose register

r30.

Exception Zero division exception

Note If the word data of general-purpose register reg1 is zero, a zero division exception

occurs, a trap occurs, and control is transferred to the exception processing handler.

In this case, the contents of general-purpose register reg2, general-purpose register

r30, and flags are not affected.

59

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Divide Floating ShortDIVF.S

Instruction format DIVF.S reg1, reg2

Operation GR [reg2] <- GR [reg2] ÷ GR [reg1]

Format Format VII

Op code 15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 000111 RFU

Flag CY 1 if GR [reg2] is negative; otherwise, 0

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

FRO 1 if operand is denormal number, non-number (NaN), and indefinite;

otherwise, not affected

FIV 1 if invalid operation occurs; otherwise, not affected

FZD 1 if zero division occurs; otherwise, not affected

FOV 1 if result of operation is greater than maximum normalized number that

can be expressed; otherwise, not affected

FUD 1 if result of operation is less than minimum (absolute value) normalized

number that can be expressed; otherwise, not affected

FPR 1 if degradation in precision is detected; otherwise, not affected

Instruction DIVF.S Divide Floating Short

Remarks Divides the single-precision floating-point data of general-purpose register reg2 by the

single-precision floating-point data of general-purpose register reg1, reflects the result

on the flags, and stores the result to general-purpose register reg2. Of the flags, the

statuses of CY, OV, S, and Z are directly determined by the result of executing this

instruction. The other floating-point data flags are not affected unless a given condition

is satisfied, and hold the values determined before this instruction has been executed.

The S flag has the same value as that of the CY flag.

If the single-precision floating-point data of general-purpose register reg2 is zero, and

if the single-precision floating-point data of general-purpose register reg1 is not zero and

denormalized number, the result of operation is zero.

The sign of the operation result is determined through exclusive OR between the sign

fields of the single-precision floating-point data of general-purpose registers reg1 and

reg2.

Exception • Floating-point reserved operand exception

• Floating-point invalid operation exception

• Floating-point zero division exception

• Floating-point overflow exception

60

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Note If the specified single-precision floating-point data is a denormal number, non-number,

or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO

flag is set, a trap occurs, and control is transferred to the exception processing handler.

In this case, general-purpose register reg2 and the other flags are not affected.

If both the specified single-precision floating-point data are zero, the floating-point

invalid operation exception occurs. As a result, the FIV flag is set, a trap occurs, and

control is transferred to the exception processing handler. In this case, general-purpose

register reg2 and the other flags are not affected.

If the single-precision floating-point data of general-purpose register reg1 is zero and

the single-precision floating-point data of general-purpose register reg2 is a normalized

number, the floating-point zero division exception occurs. As a result, the FZD flag is

set, a trap occurs, and control is transferred to the exception processing handler. In this

case, general-purpose register reg2 and the other flags are not affected.

If the result of operation is greater than the maximum normalized number that can be

expressed, the floating-point overflow exception occurs. As a result, the FOV flag is set,

a trap occurs, and control is transferred to the exception processing handler. In this

case, the result of operation having a corrected exponent is stored to general-purpose

register reg2.

If the result of operation is less than the minimum (absolute value) normalized number

that is not zero and can be expressed, the FUD flag is set, but a trap does not occur

and control is not transferred to the exception processing handler. In this case, denormal

number is stored to general-purpose register reg2.

If degradation in precision occurs as a result of rounding after conversion, the FPR flag

is set, but control is not trapped to the exception processing handler. In this case, the

result of operation having the rounded mantissa is stored to general-purpose register

reg2.

61

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Divide UnsignedDIVU

Instruction format DIVU reg1, reg2

Operation GR [30] <- GR [reg2] MOD GR [reg1] (unsigned)

GR [reg2] <- GR [reg2] ÷ GR [reg1] (unsigned)

Format Format I

Op code 15 10 9 5 4 0

001011 reg2 reg1

Flag CY –

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction DIVU Divide Unsigned

Remarks Divides the word data of general-purpose register reg2 by the word data of general-

purpose register reg1 (signed) as unsigned data, and stores the quotient in general-

purpose register reg2 and the remainder in general-purpose register r30, respectively.

The contents of general-purpose register reg1 are not affected. If r30 is specified as

general-purpose register reg2, the quotient is stored in general-purpose register r30.

The flags are set as if the result were signed data.

Exception Zero division exception

Note If the word data of general-purpose register reg1 is zero, a zero division exception

occurs, a trap occurs, and control is transferred to the exception processing handler.

In this case, the contents of general-purpose register reg2, general-purpose register

r30, and flags are not affected.

62

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

HaltHALT

Instruction format HALT

Operation Halt

Format Format II

Op code 15 10 9 5 4 0

011010 reg2 imm5

Flag CY –

OV –

S –

Z –

Instruction HALT Halt

Remarks Halts the processor.

Exception None

Supplement If an interrupt is accepted in the HALT status set by the HALT instruction, the address

of the instruction next to the HALT instruction is stored in the EIPC or FEPC.

63

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Input From PortIN

Instruction format (1) IN.B disp16 [reg1], reg2

(2) IN.H disp16 [reg1], reg2

(3) IN.W disp16 [reg1], reg2

Operation (1) adr <- GR [reg1] + (sign-extend) disp16

GR [reg2] Input-Port (adr, Byte)

(2) adr <- GR [reg1] + (sign-extend) disp16

GR [reg2] Input-Port (adr, Halfword)

(3) adr <- GR [reg1] + (sign-extend) disp16

GR [reg2] Input-Port (adr, Word)

Format (1) Format VI

Op code 15 10 9 5 4 0 31 16

1110*$ reg2 reg1 disp16

(*$: 00 = (1), 01 = (2), 11 = (3))

Flag CY –

OV –

S –

Z –

Instruction (1) IN.B Input Byte from Port

(2) IN.H Input Halfword from Port

(3) IN.W Input Word from Port

Remarks (1) Adds the data of general-purpose register reg1 and the value sign-extended from

the 16-bit displacement to word length to generate an unsigned 32-bit port address.

From this port address, byte data is read, zero-extended to word length, and stored

in general-purpose register reg2.

(2) Adds the data of general-purpose register reg1 and the 16-bit displacement sign-

extended to word length to generate an unsigned 32-bit port address. From this

port address, halfword data is read, zero-extended to word length, and stored in

general-purpose register reg2. Bit 0 of the unsigned 32-bit address is masked with

0.

(3) Adds the data of general-purpose register reg1 and the value sign-extended from

the 16-bit displacement to word length to generate an unsigned 32-bit port address.

From this port address, word data is read and stored in general-purpose register

reg2. Bits 0 and 1 of the unsigned 32-bit address are masked with 0.

Exception None

zero-extend

zero-extend

64

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Jump and LinkJAL

Instruction format JAL disp26

Operation GR [31] <- PC + 4

PC <- PC + (sign-extend) disp26

Format Format IV

Op code 15 10 9 16

101011 disp26 0

Flag CY –

OV –

S –

Z –

Instruction JAL Jump and Link

Remarks Saves the value resulting from adding 4 to the current PC contents into the general-

purpose register r31, sets the value resulting from adding the current PC contents to

the value sign-extended from the 26-bit displacement to word length to the PC, and

transfers control. Bit 0 of the 26-bit displacement is masked with 0. The current PC

contents used for the calculation is the address of the first byte of the JAL instruction

itself; therefore, if the displacement value is 0, the branch destination is this instruction

itself.

Exception None

65

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Jump registerJMP

Instruction format JMP [reg1]

Operation PC <- GR [reg1]

Format Format I

Op code 15 10 9 5 4 0

000110 reg2 reg1

Flag CY –

OV –

S –

Z –

Instruction JMP Jump register

Remarks Transfers control to the address specified by general-purpose register reg1. Bit 0 of the

address is masked with 0.

Exception None

66

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Jump RelativeJR

Instruction format JR disp26

Operation PC <- PC + (sign-extend) disp26

Format Format IV

Op code 15 10 9 16

101010 disp26 0

Flag CY –

OV –

S –

Z –

Instruction JR Jump Relative

Remarks Sets the value resulting from adding the current PC contents to the value sign-extended

from the 26-bit displacement to word length to the PC and transfers control. Bit 0 of the

26-bit displacement is masked with 0.

The current PC contents used for the calculation is the address of the first byte of the

JMP instruction itself; therefore, if the displacement value is 0, the branch destination

is this instruction itself.

Exception None

67

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

LoadLD

Instruction format (1) LD.B disp16[reg1], reg2

(2) LD.H disp16[reg1], reg2

(3) LD.W disp16[reg1], reg2

Operation (1) addr <- GR [reg1] + (sign-extend) disp16

GR [reg2] Load-Memory (adr, Byte)

(2) adr <- GR [reg1] + (sign-extend) disp16

GR [reg2] Load-Memory (adr, Halfword)

(3) adr <- GR [reg1] + (sign-extend) disp16

GR [reg2] Load-Memory (adr, Word)

Format Format VI

Op code 15 10 9 5 4 0 31 16

1100*$ reg2 reg1 disp16

(*$: 00 = (1), 01 = (2), 11 = (3))

Flag CY –

OV –

S –

Z –

Instruction (1) LD.B Load Byte

(2) LD.H Load Halfword

(3) LD.W Load Word

Remarks (1) Adds the data of general-purpose register reg1 and the displacement sign-extended

from 16 bits to word length to generate a 32-bit unsigned address. From the

generated address, byte data is read, which is then sign-extended to word length

and is stored in general-purpose register reg2.

(2) Adds the data of general-purpose register reg1 and the displacement sign-extended

from 16 bits to word length to generate a 32-bit unsigned address. From the

generated address, halfword data is read, which is then sign-extended to word

length, and is stored in general-purpose register reg2. Bit 0 of the 32-bit unsigned

address is masked with 0.

(3) Adds the data of general-purpose register reg1 and the displacement sign-extended

from 16 bits to word length to generate a 32-bit unsigned address. From the

generated address, word data is read, and stored in general-purpose register reg2.

Bits 0 and 1 of the 32-bit unsigned address are masked with 0.

Exception None

sign extend

sign extend

68

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Load to System RegisterLDSR

Instruction format LDSR reg2, regID

Operation SR [regID] <- GR [reg2]

Format Format II

Op code 15 10 9 5 4 0

011100 reg2 imm5

Flag CY – (Refer to Supplement below.)

OV – (Refer to Supplement below.)

S – (Refer to Supplement below.)

Z – (Refer to Supplement below.)

Instruction LDSR Load to System Register

Remarks Sets the word data of general-purpose register reg2 to a system register specified by

the system register number (regID). The contents of general purpose register reg2 is

not affected. The system register number is a number to identify a system register. If

the LDSR instruction is executed to a reserved system register or write-disabled system

register, the operation is not guaranteed.

Exception None

Note If the system register number (regID) is 5 (PSW), the value of the corresponding bit of

general-purpose register reg2 is set to each flag of the PSW.

69

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

MoveMOV

Instruction format (1) MOV reg1, reg2

(2) MOV imm5, reg2

Operation (1) GR [reg2] <- GR [reg1]

(2) GR [reg2] <- sign-extend (imm5)

Format (1) Format I

(2) Format II

Op code 15 10 9 5 4 0

(1) 000000 reg2 reg1

15 10 9 5 4 0

(2) 010000 reg2 imm5

Flag CY –

OV –

S –

Z –

Instruction (1) MOV Move Register

(2) MOV Move Immediate (5-bit)

Remarks (1) Copies and transfers the word data of general-purpose register reg1 to general-

purpose register reg2. The contents of general-purpose register reg1 are not

affected.

(2) Copies and transfers the value sign-extended from 5-bit immediate data to word

length to general-purpose register reg2.

Exception None

70

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Move Bit String UpwardMOVBSU

Instruction format MOVBSU

Operation destination <- source

Format Format II

Op code 15 10 9 5 4 0

011111 reg2 01011

Flag CY –

OV –

S –

Z –

Instruction MOVBSU Move Bit String Upward

Remarks Transfers the source bit string specified by general-purpose registers r30 (source word

address), r27 (bit offset in source word), and r28 (string length) to the position specified

by general-purpose registers r29 (destination word address) and r26 (bit offset in

destination word). Transfer is carried out from the lower address (first address) toward

the higher address (end address).

Supplement General-purpose registers r26 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use

r26 Bit offset in destination word

r27 Bit offset in source word

r28 String length

r29 Destination word address

r30 Source word address

Exception None

71

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

AddMOVEA

Instruction format MOVEA imm16, reg1, reg2

Operation GR [reg2] <- GR [reg1] + sign-extend (imm16)

Format Format V

Op code 15 10 9 5 4 0 31 16

101000 reg2 reg1 imm16

Flag CY –

OV –

S –

Z –

Instruction MOVEA Add Immediate (16-bit)

Remarks Adds the value sign-extended from 16-bit immediate data to word length and the word

data of general-purpose register reg1, and stores the result in general-purpose register

reg2. The contents of general-purpose register reg1 are not affected. Neither are the

flags affected.

Exception None

72

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

AddMOVHI

Instruction format MOVHI imm16, reg1, reg2

Operation GR [reg2] <- GR [reg1] + (imm16 || 016)

Format Format V

Op code 15 10 9 5 4 0 31 16

101111 reg2 reg1 imm16

Flag CY –

OV –

S –

Z –

Instruction MOVHI Add

Remarks Adds word data whose higher 16 bits are immediate data and lower 16 bits are all 0 and

the word data of general-purpose register reg1, and stores the result of the addition in

general-purpose register reg2. The contents of general-purpose register reg1 are not

affected. Neither are the flags affected.

Exception None

73

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

MultiplyMUL

Instruction format MUL reg1, reg2

Operation result <- GR [reg2] ✕ GR [reg1] (signed)

GR [30] <- result (higher 32 bits)

GR [reg2] <- result (lower 32 bits)

Format Format I

Op code 15 10 9 5 4 0

001000 reg2 reg1

Flag CY –

OV 1 if Integer-Overflow occurs; otherwise, 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise; 0

Instruction MUL Multiply

Remarks Multiplies the word data of general-purpose register reg2 by the word data of general-

purpose register reg1 (signed), and stores the higher 32 bits of the result (double word

length) in general-purpose register r30, and the lower 32 bits in general-purpose register

reg1 are not affected. If r30 is specified as general-purpose register reg2, the lower 32

bits of the result are stored in r30. An overflow is set if the result of the doubleword length

is not equal to the value sign-extended from the lower 32 bits to doubleword length.

Exception None

74

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Multiply Floating ShortMULF.S

Instruction format MULF.S reg1, reg2

Operation GR [reg2] <- GR [reg2] ✕ GR [reg1]

Format Format VII

Op code 15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 000110 RFU

Flag CY 1 if GR [reg2] is negative; otherwise, 0

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

FRO 1 if operand is denormal number, non-number (NaN), and indefinite;

otherwise, not affected

FIV –

FZD –

FOV 1 if result of operation is greater than maximum normalized number that

can be expressed; otherwise, not affected

FUD 1 if result of operation is less than minimum (absolute value) normalized

number that can be expressed; otherwise, not affected

FPR 1 if degradation in precision is detected; otherwise, not affected

Instruction MULF.S Multiply Floating Short

Remarks Multiplies the single-precision floating-point data of general-purpose register reg1 by the

single-precision floating-point data of general-purpose register reg2, reflects the result

on the flags, and stores the result to general-purpose register reg2. Of the flags, the

statuses of CY, OV, S, and Z are directly determined by the result of executing this

instruction. The other floating-point data flags are not affected unless a given condition

is satisfied, and hold the values determined before this instruction has been executed.

The S flag has the same value as that of the CY flag.

If one of the two single-precision floating-point data is zero and the other is zero or a

normalized number, the result of operation is zero.

The sign of the operation result is determined through exclusive OR between the sign

fields of the single-precision floating-point data of general-purpose registers reg1 and

reg2.

Exception • Floating-point reserved operand exception

• Floating-point overflow exception

75

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Note If the specified single-precision floating-point data is a denormal number, non-number,

or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO

flag is set, a trap occurs, and control is transferred to the exception processing handler.

In this case, general-purpose register reg2 and the other flags are not affected.

If the result operation is greater than the maximum normalized number that can be

expressed, the floating-point overflow exception occurs. As a result, the FOV flag is set,

a trap occurs, and control is transferred to the exception processing handler. In this

case, the result of operation having a corrected exponent is stored to general-purpose

register reg2.

If the result of operation is less than the minimum (absolute value) normalized number

that is not zero and can be expressed, the FUD flag is set, but a trap does not occur

and control is not transferred to the exception processing handler. In this case, zero

is stored to general-purpose register reg2.

If degradation in precision occurs as a result of rounding after conversion, the FPR flag

is set, but control is not trapped to the exception processing handler. In this case, the

result of operation having the rounded mantissa is stored to general-purpose register

reg2.

76

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Multiply UnsignedMULU

Instruction format MULU reg1, reg2

Operation result <- GR [reg2] ✕ GR [reg1] (unsigned)

GR [30] <- result (higher 32 bits)

GR [reg2] <- result (lower 32 bits)

Format Format I

Op code 15 10 9 5 4 0

001010 reg2 reg1

Flag CY –

OV 1 if Integer-Overflow occurs; otherwise, 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise; 0

Instruction MULU Multiply Unsigned

Remarks Multiplies the word data of general-purpose register reg2 by the word data of general-

purpose register reg1 as unsigned data, and stores the higher 32 bits of the result

(doubleword length) in general-purpose register r30, and the lower 32 bits in general-

purpose register reg2, respectively. The contents of general-purpose register reg1 are

not affected. If r30 is specified as general-purpose register reg2, the lower 32 bits of

the result are stored in r30. An overflow is set if the result of the doubleword length is

not equal to the value zero-extended from the lower 32 bits to doubleword length.

Exception None

77

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

NotNOT

Instruction format NOT reg1, reg2

Operation GR [reg2] <- NOT (GR [reg1])

Format Format I

Op code 15 10 9 5 4 0

001111 reg2 reg1

Flag CY –

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction NOT Not

Remarks Negates (1’s complement) the word data of general-purpose register reg1 and stores

the result in general-purpose register reg2. The contents of general-purpose register

reg1 are not affected.

Exception None

78

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Not Bit String UpwardNOTBSU

Instruction format NOTBSU

Operation destination <- NOT (source)

Format Format II

Op code 15 10 9 5 4 0

011111 reg2 01111

Flag CY –

OV –

S –

Z –

Instruction NOTBSU Not Bit String Upward

Remarks Logically negates the source bit string specified by general-purpose registers r30

(source word address), r27 (bit offset in source word), and r28 (string length) (inverts

1s and 0s), and transfers the result to the position specified by general-purpose registers

r29 (destination word address) and r26 (bit offset in destination word). Transfer is

carried out from the lower address (first address) toward the higher address (end

address).

Supplement General-purpose registers r26 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use

r26 Bit offset in destination word

r27 Bit offset in source word

r28 String length

r29 Destination word address

r30 Source word address

Exception None

79

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

OrOR

Instruction format OR reg1, reg2

Operation GR [reg2] <- GR [reg2] OR GR [reg1]

Format Format I

Op code 15 10 9 5 4 0

001100 reg2 reg1

Flag CY –

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction OR Or

Remarks ORs the word data of general-purpose register reg2 with the word data of general-

purpose register reg1, and stores the result in general-purpose register reg2. The

contents of general-purpose register reg1 are not affected.

Exception None

80

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Or Bit String UpwardORBSU

Instruction format ORBSU

Operation destination <- destination OR source

Format Format II

Op code 15 10 9 5 4 0

011111 reg2 01000

Flag CY –

OV –

S –

Z –

Instruction ORBSU Or Bit String Upward

Remarks ORs the source bit string specified by general-purpose registers r30 (source word

address), r27 (bit offset in source word), and r28 (string length) with the destination bit

string specified by general-purpose registers r29 (destination word address) and r26 (bit

offset in destination word), and transfers the result to the destination bit string. Transfer

is carried out from the lower address (first address) toward the higher address (end

address).

Supplement General-purpose registers r26 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use

r26 Bit offset in destination word

r27 Bit offset in source word

r28 String length

r29 Destination word address

r30 Source word address

Exception None

81

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Or ImmediateORI

Instruction format ORI imm16, reg1, reg2

Operation GR [reg2] <- GR [reg1] OR zero-extend (imm16)

Format Format V

Op code 15 10 9 5 4 0 31 16

101100 reg2 reg1 imm16

Flag CY –

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction ORI Or Immediate (16-bit)

Remarks ORs the word data of general-purpose register reg1 with the value zero-extended from

the 16-bit immediate data to word length, and stores the result in general-purpose

register reg2. The contents of general-purpose register reg1 are not affected.

Exception None

82

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Or Not Bit String UpwardORNBSU

Instruction format ORNBSU

Operation destination <- destination OR (NOT source)

Format Format II

Op code 15 10 9 5 4 0

011111 reg2 01100

Flag CY –

OV –

S –

Z –

Instruction ORNBSU Or Not Bit String Upward

Remarks NOTs the source bit string specified by general-purpose registers r30 (source word

address), r27 (bit offset in source word), and r28 (string length), ORs the result with the

destination bit string specified by general-purpose registers r29 (destination word

address) and r26 (bit offset in destination word), and transfers the result of the OR to

the destination bit string. Transfer is carried out from the lower address (first address)

toward the higher address (end address).

Supplement General-purpose registers r26 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use

r26 Bit offset in destination word

r27 Bit offset in source word

r28 String length

r29 Destination word address

r30 Source word address

Exception None

83

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Output to PortOUT

Instruction format (1) OUT.B reg2, disp16 [reg1]

(2) OUT.H reg2, disp16 [reg1]

(3) OUT.W reg2, disp16 [reg1]

Operation (1) adr <- GR [reg1] + (sign-extend) disp16

Output-Port (adr, GR [reg2], Byte)

(2) adr <- GR [reg1] + (sign-extend) disp16

Output-Port (adr, GR [reg2], Halfword)

(3) adr <- GR [reg1] + (sign-extend) disp16

Output-Port (adr, GR [reg2], Word)

Format (1) Format VI

Op code 15 10 9 5 4 0 31 16

1111*$ reg2 reg1 disp16

(*$: 00 = (1), 01 = (2), 11 = (3))

Flag CY –

OV –

S –

Z –

Instruction (1) OUT.B Output Byte to Port

(2) OUT.H Output Halfword to Port

(3) OUT.W Output Word to Port

Remarks (1) Adds the data of general-purpose register reg1 and the value sign-extended from

the 16-bit displacement to word length to generate an unsigned 32-bit port address.

To this port address, the lower 1 byte data of general-purpose register reg2 is

output.

(2) Adds the data of general-purpose register reg1 and the value sign-extended from

the 16-bit displacement to word length to generate an unsigned 32-bit port address.

To this port address, the lower 2-byte data of general-purpose register reg2 is

output. Bit 0 of the unsigned 32-bit address is masked with 0.

(3) Adds the data of general-purpose register reg1 and the value sign-extended from

the 16-bit displacement to word length to generate an unsigned 32-bit port address.

To this port address, the word data of general-purpose register reg2 is output. Bits

0 and 1 of the unsigned 32-bit address are masked with 0.

Exception None

84

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Return from Trap or InterruptRETI

Instruction format RETI

Operation if PSW.NP = 1

then PC <- FEPC

PSW <- FEPSW

else PC <- EIPC

PSW <- EIPSW

Format Format II

Op code 15 10 9 5 4 0

011001 reg2 imm5

Flag CY Read value is set

OV Read value is set

S Read value is set

Z Read value is set

Instruction RETI Return from Trap or Interrupt

Remarks Restores the contents of the restore PC and PSW from the system register and returns

execution from a trap or an interrupt routine. This instruction performs the following

operation:

(1) If the NP flag of the PSW is 1, the restore PC and PSW are restored from the FEPC

and FEPSW, respectively; if the NP flag is 0, the PC and PSW are restored from

the EIPC and EIPSW.

(2) The restored contents of the restore PC and PSW are set to the PC and PSW, and

execution jumps to the PC.

Exception None

85

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Shift Arithmetic RightSAR

Instruction format (1) SAR reg1, reg2

(2) SAR imm5, reg2

Operation (1) GR [reg2] <- GR [reg2] arithmetically shift right by GR [reg1]

(2) GR [reg2] <- GR [reg2] arithmetically shift right by zero-extend (imm5)

Format (1) Format I

(2) Format II

Op code 15 10 9 5 4 0

(1) 000111 reg2 reg1

15 10 9 5 4 0

(2) 010111 reg2 imm5

Flag CY 1 if bit shifted out last is 1; otherwise, 0. However, 0 if number of shifts is 0

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction (1) SAR Shift Arithmetic Right by Register

(2) SAR Shift Arithmetic Right by Immediate (5-bit)

Remarks (1) Arithmetically shifts the word data of general purpose register reg2 to the right by

the number of bits specified by the lower 5 bits of general-purpose register reg1

(copies the value of the MSB sequentially to the MSB), and writes the result to

general-purpose register reg2. If the number of shifts is 0, general-purpose register

reg2 holds the same value before this instruction has been executed. The number

of shifts can be specified in a range of 0 to +31 as it is 5-bit data.

(2) Arithmetically shifts the word data of general-purpose register reg2 to the right by

the number indicated by the value zero-extended from the 5-bit immediate data to

word length (copies the value of the MSB sequentially to the MSB), and writes the

result to general-purpose register reg2. If the number of shifts is 0, general-purpose

register reg2 holds the same value before this instruction has been executed. The

number of shifts can be specified in a range of 0 to +31.

Exception None

86

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Search Bit 0SCH0BS

Instruction format (1) SCH0BSU

(2) SCH0BSD

Operation Finds the first 0 from a specified bit string

Format Format II

Op code 15 10 9 5 4 0

011111 reg2 0000*

(*: 0 = (1), 1 = (2))

Flag CY –

OV –

S –

Z 1 if bit is not found; otherwise, 0

Instruction (1) SCH0BSU Search Bit 0 Upward

(2) SCH0BSD Search Bit 0 Downward

Remarks Searches a source bit string specified by general-purpose registers r30 (source word

address), r27 (bit offset in source word), and r28 (string length), stores the bit address

1 bit before the 1 found first in general-purpose registers r30 and r27, and sets the value

resulting from adding the number of bits skipped before the first 1 has been found to

general-purpose register r29, and the value resulting from subtracting the number of bits

searched to general-purpose register r28, respectively. At the same time, clears the

Z flag to 0.

If the bit is not found, stores the bit address 1 bit before the source bit string to general-

purpose registers r30 and r27, and adds the number of bits skipped to general-purpose

register r29. The value of general-purpose register r28 is 0.

At the same time, sets the Z flag to 1.

If the value of general-purpose register r28 (string length) is 0, sets the Z flag to 1. The

contents of general-purpose registers r27 through r30 are not affected.

The SCH1BSU instruction searches in the forward direction (upward), and search is

started from the bit position of the address specified by general-purpose registers r30

and r27, and is carried out from the lower address (first address) toward the higher

address (end address), for a bit string having a length specified by general-purpose

register r28.

In contrast, the SCH1BSD instruction searches in the reverse direction (downward), and

search is started from the bit position of the address specified by general-purpose

registers r30 and r27, and is carried out from the higher address (end address) toward

the lower address (first address), for a bit string having a length specified by general-

purpose register r28.

87

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Consequently, the address to be set to general-purpose registers r30 and r27 when the

instruction execution is started differs even if the bit string is the same, depending on

the search direction.

Supplement General-purpose registers r27 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use

r27 Bit offset in source word

r28 String length

r29 Number of bits skipped until detection

r30 Source word address

Exception None

88

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Search Bit 1SCH1BS

Instruction format (1) SCH1BSU

(2) SCH1BSD

Operation Finds the first 1 from a specified bit string

Format Format II

Op code 15 10 9 5 4 0

011111 reg2 0001*

(*: 0 = (1), 1 = (2))

Flag CY –

OV –

S –

Z 1 if bit is not found; otherwise, 0

Instruction (1) SCH1BSU Search Bit 1 Upward

(2) SCH1BSD Search Bit 1 Downward

Remarks Searches a source bit string specified by general-purpose registers r30 (source word

address), r27 (bit offset in source word), and r28 (string length), stores the bit address

1 bit before the 1 found first in general-purpose registers r30 and r27, and sets the value

resulting from adding the number of bits skipped before the first 1 has been found to

general-purpose register r29, and the value resulting from subtracting the number of bits

searched to general-purpose register r28, respectively. At the same time, clears the

Z flag to 0.

If the bit is not found, stores the bit address 1 bit before the source bit string to general-

purpose registers r30 and r27, and adds the number of bits skipped to general-purpose

register r29. The value of general-purpose register r28 is 0.

At the same time, sets the Z flag to 1.

If the value of general-purpose register r28 (string length) is 0, sets the Z flag to 1. The

contents of general-purpose registers r27 through r30 are not affected. The SCH1BSU

instruction searches in the forward direction (upward), and search is started from the

bit position of the address specified by general-purpose registers r30 and r27, and is

carried out from the lower address (first address) toward the higher address (end

address), for a bit string having a length specified by general-purpose register r28.

In contrast, the SCH1BSD instruction searches in the reverse direction (downward), and

search is started from the bit position of the address specified by general-purpose

registers r30 and r27, and is carried out from the higher address (end address) toward

the lower address (first address), for a bit string having a length specified by general-

purpose register r28.

89

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Consequently, the address to be set to general-purpose registers r30 and r27 when the

instruction execution is started differs even if the bit string is the same, depending on

the search direction.

Supplement General-purpose registers r27 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use

r27 Bit offset in source word

r28 String length

r29 Number of bits skipped until detection

r30 Source word address

Exception None

90

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Set Flag ConditionSETF

Instruction format SETF imm5, reg2

Operation if conditions are satisfied

then GR [reg2] <- 00000001H

else GR [reg2] <- 00000000H

Format Format II

Op code 15 10 9 5 4 0

010010 reg2 imm5

Flag CY –

OV –

S –

Z –

Instruction SETF Set Flag Condition

Remarks Stores 1 in general-purpose register reg2 if the condition indicated by the lower 4 bits

of the 5-bit immediate is satisfied; otherwise, stores 0. Specify one of the condition

codes shown in Table 5-10 as the lower 4 bits of the 5-bit immediate. The highest bit

is ignored.

Exception None

91

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-10 Condition Codes

Condition code Event name Conditional expression

0000 V OV = 1

1000 NV OV = 0

0001 C/L CY = 1

1001 NC/NL CY = 0

0010 Z Z = 1

1010 NZ Z = 0

0011 NH (CY or Z) = 1

1011 H (CY or Z) = 0

0100 S/N S = 1

1100 NS/P S = 0

0101 T always 1

1101 F always 0

0110 LT (S xor OV) = 1

1110 GE (S xor OV) = 0

0111 LE ((S xor OV) or Z) = 1

1111 GT ((S xor OV) or Z) = 0

92

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Shift Logical LeftSHL

Instruction format (1) SHL reg1, reg2

(2) SHL imm5, reg2

Operation (1) GR [reg2] <- GR [reg2] logically shift left by GR [reg1]

(2) GR [reg2] <- GR [reg2] logically shift left by zero-extend (imm5)

Format (1) Format I

(2) Format II

Op code 15 10 9 5 4 0

(1) 000100 reg2 reg1

15 10 9 5 4 0

(2) 010100 reg2 imm5

Flag CY 1 if bit shifted out last is 1; otherwise, 0. However, 0 if number of shifts is 0

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction (1) SHL Shift Logical Left by Register

(2) SHL Shift Logical Left by Immediate (5-bit)

Remarks (1) Logically shifts the word data of general purpose register reg2 to the left by the

number of bits specified by the lower 5 bits of general-purpose register reg1 (sends

0 to the LSB side), and writes the result to general-purpose register reg2. If the

number of shifts is 0, general-purpose register reg2 holds the same value before

this instruction has been executed. The number of shifts can be specified in a range

of 0 to +31 as it is 5-bit data.

(2) Logically shifts the word data of general-purpose register reg2 to the left by the

number indicated by the value zero-extended from the 5-bit immediate data to word

length (sends 0 to the LSB side), and writes the result to general-purpose register

reg2. If the number of shifts is 0, general-purpose register reg2 holds the same

value before this instruction has been executed. The number of shifts can be

specified in a range of 0 to +31.

Exception None

93

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Shift Logical RightSHR

Instruction format (1) SHR reg1, reg2

(2) SHR imm5, reg2

Operation (1) GR [reg2] <- GR [reg2] logically shift right by GR [reg1]

(2) GR [reg2] <- GR [reg2] logically shift right by zero-extend (imm5)

Format (1) Format I

(2) Format II

Op code 15 10 9 5 4 0

(1) 000101 reg2 reg1

15 10 9 5 4 0

(2) 010101 reg2 imm5

Flag CY 1 if bit shifted out last is 1; otherwise, 0. However, 0 if number of shifts is 0

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction (1) SHR Shift Logical Right by Register

(2) SHR Shift Logical Right by Immediate (5-bit)

Remarks (1) Logically shifts the word data of general purpose register reg2 to the right by the

number of bits specified by the lower 5 bits of general-purpose register reg1 (sends

0 to the MSB side), and writes the result to general-purpose register reg2. If the

number of shifts is 0, general-purpose register reg2 holds the same value before

this instruction has been executed. The number of shifts can be specified in a range

of 0 to +31 as it is 5-bit data.

(2) Logically shifts the word data of general-purpose register reg2 to the right by the

number indicated by the value zero-extended from the 5-bit immediate data to word

length (sends 0 to the MSB side), and writes the result to general-purpose register

reg2. If the number of shifts is 0, general-purpose register reg2 holds the same

value before this instruction has been executed. The number of shifts can be

specified in a range of 0 to +31.

Exception None

94

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

StoreST

Instruction format (1) ST.B reg2, disp16[reg1]

(2) ST.H reg2, disp16[reg1]

(3) ST.W reg2, disp16[reg1]

Operation (1) adr <- GR [reg1] + (sign-extend) disp16

Store-Memory (adr, GR [reg2], Byte)

(2) adr <- GR [reg1] + (sign-extend) disp16

Store-Memory (adr, GR [reg2], Halfword)

(3) adr <- GR [reg1] + (sign-extend) disp16

Store-Memory (adr, GR [reg2], Word)

Format Format VI

Op code 15 10 9 5 4 0 31 16

1101*$ reg2 reg1 disp16

(*$: 00 = (1), 01 = (2), 11 = (3))

Flag CY –

OV –

S –

Z –

Instruction (1) ST.B Store Byte

(2) ST.H Store Halfword

(3) ST.W Store Word

Remarks (1) Adds the data of general-purpose register reg1 and the displacement sign-extended

from 16 bits to word length to generate a 32-bit unsigned address, and stores the

lower 1 byte of general-purpose register reg2 in the generated address.

(2) Adds the data of general-purpose register reg1 and the displacement sign-extended

from 16 bits to word length to generate a 32-bit unsigned address, and store the

lower 2 bytes of general-purpose register 2 in the generated address. Bit 0 of the

32-bit unsigned address is masked with 0.

(3) Adds the data of general-purpose register reg1 and the displacement sign-extended

from 16 bits to word length to generate a 32-bit unsigned address, and stores the

word data of general-purpose register reg2 in the generated address. Bits 0 and

1 of the 32-bit unsigned address are masked with 0.

Exception None

95

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Store Contents of System RegisterSTSR

Instruction format STSR regID, reg2

Operation GR [reg2] <- SR [regID]

Format Format II

Op code 15 10 9 5 4 0

011101 reg2 imm5

Flag CY –

OV –

S –

Z –

Instruction STSR Store Contents of System Register

Remarks Sets the contents of a system register specified by the system register number (reg

ID) to general-purpose register reg2. The contents of the system register are not

affected. The system register number is a number to identify a system register. If the

STSR instruction is executed to a reserved system register, the operation is not

guaranteed.

Exception None

96

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

SubtractSUB

Instruction format SUB reg1, reg2

Operation GR [reg2] <- GR [reg2] – GR [reg1]

Format Format I

Op code 15 10 9 5 4 0

000010 reg2 reg1

Flag CY 1 if borrow occurs from MSB; otherwise, 0

OV 1 if Integer-Overflow occurs; otherwise, 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise; 0

Instruction SUB Subtract

Remarks Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. The

contents of general-purpose register reg1 are not affected.

Exception None

97

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Subtract Floating ShortSUBF.S

Instruction format SUBF.S reg1, reg2

Operation GR [reg2] <- GR [reg2] – GR [reg1]

Format Format VII

Op code 15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 000101 RFU

Flag CY 1 if GR [reg2] is negative; otherwise, 0

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

FRO 1 if operand is denormal number, non-number (NaN), and indefinite;

otherwise, not affected

FIV –

FZD –

FOV 1 if result of operation is greater than maximum normalized number that

can be expressed; otherwise, not affected

FUD 1 if result of operation is less than minimum (absolute value) normalized

number that can be expressed; otherwise, not affected

FPR 1 if degradation in precision is detected; otherwise, not affected

Instruction SUBF.S Subtract Floating Short

Remarks Subtracts the single-precision floating-point data of general-purpose register reg1 from

the single-precision floating-point data of general-purpose register reg2, reflects the

result on the flags, and stores the result to general-purpose register reg2. Of the flags,

the statuses of CY, OV, S, and Z are directly determined by the execution result of this

instruction. The other floating-point data flags are not affected unless a given condition

is satisfied, and hold the values determined before this instruction has been executed.

The S flag has the same value as that of the CY flag.

If the single-precision floating-point data of general-purpose registers reg1 and reg2 are

equal in both absolute value and sign, the sign of the result is determined depending

on the rounding mode. Because the rounding mode of the V810 family is “Toward

nearest”, the result is “positive zero”.

Exception • Floating-point reserved operand exception

• Floating-point overflow exception

98

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Note If the specified single-precision floating-point data is a denormal number, non-number,

or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO

flag is set, a trap occurs, and control is transferred to the exception processing handler.

In this case, general-purpose register reg2 and the other flags are not affected.

If the result of operation is greater than the maximum normalized number that can be

expressed, the floating-point overflow exception occurs. As a result, the FOV flag is set,

a trap occurs, and control is transferred to the exception processing handler. In this

case, the result of operation having a corrected exponent is stored to general-purpose

register reg2.

If the result of operation is less than the minimum (absolute value) normalized number

that is not zero and can be expressed, the FUD flag is set, but a trap does not occur

and control is not transferred to the exception processing handler. In this case, zero

is stored to general-purpose register reg2.

If degradation in precision occurs as a result of rounding after conversion, the FPR flag

is set, but control is not trapped to the exception processing handler. In this case, the

result of operation having the rounded mantissa is stored to general-purpose register

reg2.

99

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

TrapTRAP

Instruction format TRAP vector

Operation if PSW.NP = 1

then fatal exception (MACHINE FAULT)

else if PSW.EP = 1

then FEPC <- restored PC

FEPSW <- PSW

ECR.FECC<- exception code

PSW.NP <- 1

PSW.ID <- 1

PSW.AE <- 0

PC <- <NMI handler address>

else EIPC <- restored PC

EIPSW <- PSW

ECR.EICC <- exception code

PSW.EP <- 1

PSW.ID <- 1

PSW.AE <- 0

PC <- <vector adr>

Format Format II

Op code 15 10 9 5 4 0

011000 reg2 imm5

Flag CY –

OV –

S –

Z –

Instruction TRAP Trap

Remarks If the NP flag of the PSW is 1, a fatal exception occurs, and the processor performs fatal

exception processing.

The fatal exception processing indicates the machine fault status by using the ST1, ST0,

and MRQ signals, starts the write cycle, sequentially outputs the source code (OR of

FFFF0000H and the exception code) and the current contents of the PSW and PC to

the data bus, and stops.

If the NP flag of the PSW is 0 and the EP flag is 1, the duplexed exception occurs. In

this case, the contents of the restore PC and PSW are saved to the FEPC and FEPSW,

respectively, the exception code (FECC or ECR) is set, and the flags of the PSW are

set (the NP and ID flags are set and the AE flag is cleared). Execution then jumps to

the address of the NMI handler and exception processing is started. The condition flags

are not affected.

100

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

If both the NP and EP flags of the PSW are 0, the restore PC and PSW are saved to

the EIPC and EIPSW, respectively, the exception code (EICC of ECR) is set, and the

flags of the PSW are set (the EP and ID flags are set and the AE flag is cleared).

Execution then jumps to the address of a trap handler corresponding to a trap vector

(0-31) specified by vector, and exception processing is started. The condition flags are

not affected.

The restore PC is the address of the instruction next to the TRAP instruction.

Exception None

101

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Truncate Short Floating to Word IntegerTRNC.SW

Instruction format TRNC.SW reg1, reg2

Operation GR [reg2] <- truncate (GR [reg1])

Format Format VII

Op code 15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 001011 RFU

Flag CY –

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

FRO 1 if GR [reg1] is denormal number, non-number (NaN), and indefinite;

otherwise, not affected

FIV 1 if invalid operation occurs; otherwise, not affected

FZD –

FOV –

FUD –

FPR 1 if degradation in precision is detected; otherwise, not affected

Instruction TRNC.SW Truncate Short Floating to Word Integer

Remarks Converts the single-precision floating-point data of general-purpose register reg1 to

integer data, reflects the result on the flags, and stores the result to general-purpose

register reg2. Of the flags, the statuses of CY, OV, S, and Z are directly determined

by the execution result of this instruction. The other floating-point data flags are not

affected unless a given condition is satisfied, and hold the values determined before this

instruction has been executed.

Exception • Floating-point reserved operand exception

• Floating-point invalid operation exception

Note If the specified single-precision floating-point data is a denormal number, non-number,

or indefinite, a floating-point reserved operand exception occurs. As a result, the FRO

flag is set, a trap occurs, and control is transferred to the exception processing handler.

In this case, general-purpose register reg2 and the other flags are not affected.

If the operation result is not in a range in which a word-length integer cannot be

expressed, the invalid floating-point operation exception occurs. As a result, the FIV

flag is set, a trap occurs, and control is transferred to the exception processing handler.

In this case, general-purpose register reg2 and the other flags are not affected.

102

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

If degradation in precision occurs as a result of rounding after conversion, the FPR flag

is set, but control is not trapped to the exception processing handler. In this case, the

result 0 operation having the rounded mantissa is stored to general-purpose register

reg2.

103

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Exclusive OrXOR

Instruction format XOR reg1, reg2

Operation GR [reg2] <- GR [reg2] XOR GR [reg1]

Format Format I

Op code 15 10 9 5 4 0

001110 reg2 reg1

Flag CY –

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction XOR Exclusive Or

Remarks Exclusive-ORs the word data of general-purpose register reg2 with the word data of

general-purpose register reg1, and stores the result in general-purpose register reg2.

The contents of general-purpose register reg1 are not affected.

Exception None

104

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Exclusive Or Bit String UpwardXORBSU

Instruction format XORBSU

Operation destination <- destination XOR source

Format Format II

Op code 15 10 9 5 4 0

011111 reg2 01010

Flag CY –

OV –

S –

Z –

Instruction XORBSU Exclusive Or Bit String Upward

Remarks Exclusively ORs the source bit string specified by general-purpose registers r30 (source

word address), r27 (bit offset in source word), and r28 (string length) with the destination

bit string specified by general-purpose registers r29 (destination word address) and r26

(bit offset in destination word), and transfers the result to the destination bit string.

Transfer is carried out from the lower address (first address) toward the higher address

(end address).

Supplement General-purpose registers r26 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use

r26 Bit offset in destination word

r27 Bit offset in source word

r28 String length

r29 Destination word address

r30 Source word address

Exception None

105

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Exclusive Or ImmediateXORI

Instruction format XORI imm16, reg1, reg2

Operation GR [reg2] <- GR [reg1] XOR zero-extend (imm16)

Format Format V

Op code 15 10 9 5 4 0 31 16

101110 reg2 reg1 imm16

Flag CY –

OV 0

S 1 if GR [reg2] is negative; otherwise, 0

Z 1 if GR [reg2] is 0; otherwise, 0

Instruction XORI Exclusive Or Immediate (16-bit)

Remarks Exclusive-ORs the word data of general-purpose register reg1 with the value zero-

extended from the 16-bit immediate data to word length, and stores the result in general-

purpose register reg2. The contents of general-purpose register reg1 are not affected.

Exception None

106

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Exclusive Or Not Bit String UpwardXORNBSU

Instruction format XORNBSU

Operation destination <- destination XOR (NOT source)

Format Format II

Op code 15 10 9 5 4 0

011111 reg2 01110

Flag CY –

OV –

S –

Z –

Instruction XORNBSU Exclusive Or Not Bit String Upward

Remarks NOTs the source bit string specified by general-purpose registers r30 (source word

address), r27 (bit offset in source word), and r28 (string length), exclusive–ORs the

result with the destination bit string specified by general-purpose registers r29 (destination

word address) and r26 (bit offset in destination word), and transfers the result of the

exclusive OR to the destination bit string. Transfer is carried out from the lower address

(first address) toward the higher address (end address).

Supplement General-purpose registers r26 through r30 are assigned as the work registers of the bit

string instruction and hold information necessary for aborting and resuming the instruction

while the instruction is executed.

General-purpose register Use

r26 Bit offset in destination word

r27 Bit offset in source word

r28 String length

r29 Destination word address

r30 Source word address

Exception None

107

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

5.4 Instruction Execution Clock Cycles

5.4.1 Normal instruction

The V810 family instruction execution clock cycles (excluding bit string instruction) are shown in Table 5-11.

This data is the minimum execute clock cycles with cache hit, no hazard, and no wait.

For the LD.W, ST.W , IN.W, and OUT.W instructions, the execution clock cycles will differ according to the

external bus width.

Table 5-11 Instruction Execution Clock Cycles (1/3)

Instruction Group Mnemonic Operand Clock Cycles

Integer MOV reg1, reg2 1

Arithmetic ADD

Operation/ SUB

Logical CMP

Operation SHL

Instructions SHR

SAR

MUL 13

DIV 38

MULU 13

DIVU 36

OR 1

AND

XOR

NOT

MOV imm5, reg2 1

ADD

SETF

CMP

SHL

SHR

SAR

MOVEA imm16, reg1, reg2 1

ADDI

ORI

ANDI

XORI

MOVHI

108

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-11 Instruction Execution Clock Cycles (2/3)

Instruction Group Mnemonic Operand Clock Cycles

Special TRAP imm5 15

Instructions RETI 10

CAXI disp16 [reg1], reg2 32-bit bus: 22

16-bit bus: 26

Program JMP [reg1] 3

Control JR (disp26) [PC] 3

Instructions JAL

Bcond (disp9) [PC] taken = 3

No-taken = 1

Load/Store LD.B disp16 [reg1], reg2 1-3Note 1

Instructions LD.H

LD.W 32-bit bus: 1-3Note 1

16-bit bus: 1-5Note 2

ST.B reg2, disp16 [reg1] 1 (2)Note 3

ST.H

ST.W 32-bit bus: 1 (2)Note 3

16-bit bus: 1 (4)Note 3

I/O Instructions IN.B disp16 [reg1], reg2 3

IN.H

IN.W 32-bit bus: 3

16-bit bus: 5

OUT.B reg2, disp16 [reg1] 1 (2)Note 3

OUT.H

OUT.W 32-bit bus: 1 (2)Note 3

16-bit bus: 1 (4)Note 3

Notes 1. The number of execution clock cycles for the LD instructions (excluding LD.W in the 16-bit bus

mode) differs depending on the preceding instruction as explained below:

3 cycles : when the LD instruction is executed alone

2 cycles : when an LD instruction precedes the LD instruction (for the latter one)

1 cycle : when the LD instruction follows an instruction which requires many execution clock

cycles and does not perform any operations conflicting with the LD instructions

2. The number of execution clock cycles for the LD.W instruction in the 16-bit bus mode differs

depending on the preceding instruction as explained below:

5 cycles : when the LD.W instruction is executed alone

4 cycles : when an LD instruction precedes the LD.W instruction (for the latter one)

1 cycle : when the LD.W instruction follows an instruction which requires many execution

clock cycles and does not perform any operations conflicting with the LD instructions

3. The number in parentheses applies to the instruction execution after two or more consecutive

executions of the same instruction.

109

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-11 Instruction Execution Clock Cycles (3/3)

Instruction Group Mnemonic Operand Clock Cycles

Floating-point CVT.WS reg1, reg2 5-16

Operation CVT.SW 9-14

Instructions TRNC.SW 8-14

CMPF.S 7-10

ADDF.S 9-28

SUBF.S 12-28

MULF.S 8-30

DIVF.S 44

110

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

1 2 N

1 2 N

▲

1 2 N

▲

1 2 N

▲

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

▲
▲

▲
▲

▲
▲

1 2 N

1 2 N

▲

1 2 N

▲

▲

5.4.2 Search bit string instructions

The execution clock cycles of the search bit string instructions (SCH0BSU, SCH1BSU, SCH0BSD, SCH1BSD)

are shown in Table 5-12.

This data shows the minimum execution clock cycles with cache hit, no hazard, and no wait in the 32-/16-bit

bus mode.

Table 5-12 Execution Clock Cycles of Search Bit String Instructions (1/4)

(a) 32-bit bus (1/2)

Boundary Condition Search Range Clock Cycles by Pattern Detection Position When
Instructions (Positions of start (word length) No

and end points) (N • 3)Note 1st word 2nd word pth wordNote Nth word Detection

SCH0BSU Bit string length = 0 0 — — — — 13

or 1 29 — — — 29

SCH1BSU 1 29 — — — 29

1 29 — — — 29

1 29 — — — 29

2 38 39 — — 40

2 28 47 — — 47

2 28 52 — — 46

2 38 41 — — 35

N 38 41 3p + 35 3N + 33 3N + 34

N 28 52 3p + 46 3N + 44 3N + 45

N 28 52 3p + 46 3N + 46 3N + 40

N 38 41 3p + 35 3N + 35 3N + 29

Note N > p • 3 (N is the last word of the search range.)

111

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-12 Execution Clock Cycles of Search Bit String Instructions (2/4)

(a) 32-bit bus (2/2)

Boundary Condition Search Range Clock Cycles by Pattern Detection Position When
Instructions (Positions of start (word length) No

and end points) (N • 3)Note 1st word 2nd word pth wordNote Nth word Detection

SCH0BSD Bit string length = 0 0 — — — — 15

or 1 26 — — — 28

SCH1BSD 1 26 — — — 28

1 26 — — — 28

1 26 — — — 28

2 31 48 — — 50

2 31 48 — — 50

2 43 48 — — 47

2 43 46 — — 40

N 31 55 3p + 49 3N + 49 3N + 43

N 31 55 3p + 49 3N + 51 3N + 50

N 43 46 3p + 40 3N + 42 3N + 41

N 43 46 3p + 40 3N + 40 3N + 34

Note N > p • 3 (N is the last word of the search range.)

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

▲

1 2 N

▲
▲

▲
▲

▲

▲
▲

▲

▲

▲
▲

112

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-12 Execution Clock Cycles of Search Bit String Instructions (3/4)

(b) 16-bit bus (1/2)

Boundary Condition Search Range Clock Cycles by Pattern Detection Position When
Instructions (Positions of start (word length) No

and end points) (N • 3)Note 1st word 2nd word pth wordNote Nth word Detection

SCH0BSU Bit string length = 0 0 — — — — 13

or 1 31 — — — 31

SCH1BSU 1 31 — — — 31

1 31 — — — 31

1 31 — — — 31

2 40 43 — — 44

2 30 51 — — 51

2 30 56 — — 50

2 40 45 — — 39

N 40 45 5p + 35 5N + 33 5N + 34

N 30 56 5p + 46 5N + 44 5N + 45

N 30 56 5p + 46 5N + 46 5N + 40

N 40 45 5p + 35 5N + 35 5N + 29

Note N > p • 3 (N is the last word of the search range.)

1 2 N

1 2 N

▲

1 2 N

▲

1 2 N

▲

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

▲

▲
▲

1 2 N

1 2 N
▲

1 2 N

▲

▲

▲

▲

▲

113

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-12 Execution Clock Cycles of Search Bit String Instructions (4/4)

(b) 16-bit bus (2/2)

Boundary Condition Search Range Clock Cycles by Pattern Detection Position When
Instructions (Positions of start (word length) No

and end points) (N • 3)Note 1st word 2nd word pth wordNote Nth word Detection

SCH0BSD Bit string length = 0 0 — — — — 15

or 1 28 — — — 30

SCH1BSD 1 28 — — — 30

1 28 — — — 30

1 28 — — — 30

2 33 52 — — 54

2 33 52 — — 54

2 45 52 — — 51

2 45 50 — — 44

N 33 59 5p + 49 5N + 49 5N + 43

N 33 59 5p + 49 5N + 51 5N + 50

N 45 50 5p + 40 5N + 42 5N + 41

N 45 50 5p + 40 5N + 40 5N + 34

Note N > p • 3 (N is the last word of the search range.)

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

1 2 N

▲

1 2 N

▲
▲

▲
▲

▲
▲

▲
▲

▲

▲
▲

114

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

5.4.3 Arithmetic bit string instructions

The execution clock cycles of the arithmetic bit string instructions (MOVBSU, NOTBSU, ANDBSU, ANDNBSU,

ORBSU ORNBSU, XORBSU, XORNBSU) are shown in Table 5-13. The boundary conditions of the transfer types

(TYPE1 to TYPE7) are shown in Table 5-14.

This data shows the minimum execution clock cycles without cache hit, no hazard, and no wait.

Table 5-13 Execution Clock Cycles of Arithmetic Bit String Instructions

Clock Cycles
Types Boundary Condition Image 1 wordNote 2 wordNote Nth word (N • 3)Note

32-bit bus 16-bit bus 32-bit bus 16-bit bus 32-bit bus 16-bit bus

TYPE1 32 38 41 53 6N + 30 12N + 30

TYPE2 32 38 42 54 6N + 31 12N + 31

TYPE3 37 43 48 60 6N + 35 12N + 35

TYPE4 43 49 49 61 6N + 36 6N + 36

TYPE5 32 38 43 55 6N + 31 12N + 31

TYPE6 14 20 — —

TYPE7 37 43 — —

Note Number of words of memory space occupied by source bit string. (N is the last word of the source

bit string.)

Remark src.: Source bit string

dst.: Destination bit string

1 2 N N + 1

src.

dst.

▲ ▲

1 2 N N + 1

src.

dst.

▲ ▲

1 2 N N + 1

src.

dst.

▲ ▲

1 2 N N + 1

src.

dst.

▲▲

1 2 N N + 1

src.

dst.
▲ ▲

1 2 N N + 1

src.

dst.

▲ ▲

1 2 N N + 1

src.

dst.

▲

115

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

Table 5-14 Boundary Condition of Arithmetic Bit String Instructions

Condition Types

length • 0 src. ofs = dst. ofs Is src. ofs + length a multiple of the word number? YES TYPE1

NO TYPE2

Are the number of words of the YES dst. ofs = 0 TYPE3

memory space occupied by the source

bit string and that of the memory dst. ofs • 0 TYPE5

space occupied by the destination bit

string the same? NO TYPE4

length = 0 TYPE6

When the source and destination bit strings are in the same word and src. ofs>dst. ofs. TYPE7

Remark length : Bit string length

src. ofs : Bit offset in word of source bit string

dst. ofs : Bit offset in word of destination bit string

116

CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET

[MEMO]

117

CHAPTER 6 INTERRUPT AND EXCEPTION

CHAPTER 6 INTERRUPT AND EXCEPTION

Interrupts are events that take place independently of the program execution and can be classified into

maskable interrupts and a non-maskable interrupt. An exception is an event that takes place depending upon the

program execution. There is little difference between the interrupt and exception in terms of flow, but the interrupt

takes precedence over the exception. The V810 family architecture is provided with the interrupts and exceptions

listed in the table below. If a maskable interrupt or NMI occurs, control is transferred to a handler whose address

is determined by the source of the interrupt or exception. The exception source can be checked by examining an

exception code stored in the ECR (Exception Code Register). Each handler analyzes the contents of the ECR

and performs appropriate exception/interrupt processing.

Table 6-1 Exception Codes

Exception and interrupt Classification Exception code Handler address Restore PCNote 1

Reset Interrupt F F F 0 F F F F F F F 0 Note 2

NMI Interrupt F F D 0 F F F F F F D 0 next PCNote 3

Duplexed exception Exception Note 4 F F F F F F D 0 current PC

Address trap Exception F F C 0 F F F F F F C 0 current PC

Trap instruction (parameter is 0x1n) Exception F F B n F F F F F F B 0 next PC

Trap instruction (parameter is 0x0n) Exception F F A n F F F F F F A 0 next PC

Invalid instruction code Exception F F 9 0 F F F F F F 9 0 current PC

Zero division Exception F F 8 0 F F F F F F 8 0 current PC

FIV (floating-point invalid operation) Exception F F 7 0 F F F F F F 6 0 current PC

FZD (floating-point zero division) Exception F F 6 8 F F F F F F 6 0 current PC

FOV (floating-point overflow) Exception F F 6 4 F F F F F F 6 0 current PC

FUD (floating-point underflow)Note 5 Exception F F 6 2 F F F F F F 6 0 current PC

FPR (floating-point precision degradation)Note 5 Exception F F 6 1 F F F F F F 6 0 current PC

FRO (floating-point reserved operand) Exception F F 6 0 F F F F F F 6 0 current PC

INT level n (n = 0-15) Interrupt F E n 0 F F F F F En 0 next PCNote 3

Notes 1. PC to be saved to EIPC or FEPC.

2. EIPC and FEPC are undefined.

3. While an instruction whose execution is aborted by an interrupt (refer to Table 6-2) is executed, restore PC =

current PC.

4. The exception code of the exception that occurs for the first time is stored to the lower 16 bits of the ECR, and

the exception code of the exception that occurs the second time is stored in the higher 16 bits.

5. In the V810 family, the floating-point underflow exception and floating-point precision degradation exception do

not occur.

Table 6-2 Instructions Aborted by Interrupt

Instructions aborted by interrupt

DIV/DIVU instruction

Floating-point operation instructions

Bit string instructions

118

CHAPTER 6 INTERRUPT AND EXCEPTION

6.1 Exception Processing

If an exception occurs, the processor performs the following processing and transfers control to a handler

routine:

(1) If the NP of the PSW has been already set, proceeds to (8) Fatal exception processing.

(2) If the EP of the PSW has been already set, proceeds to (9) Duplexed exception processing.

(3) Saves the restore PC to the EIPC.

(4) Saves the current PSW to the EIPSW.

(5) Writes the exception code to the lower 16 bits of the ECR (EICC).

(6) Sets the EP and ID bits of the PSW and clears the AE bit.

(7) Jumps to the handler address.

(8) Fatal exception processing

(a) Becomes the machine faults status, starts the write cycle, and sequentially outputs the source code

(OR of FFFF0000H and exception code) of the fatal exception at address 00000000H, the current

PSW at address 00000004H, and the current PC at address 00000008H to the data bus.

(b) Halts until reset.

(9) Duplexed exception processing

(a) Saves the restore PC to the FEPC.

(b) Saves the current PSW to the FEPSW.

(c) Writes the exception code of the source that causes the duplexed exception to the higher 16 bits

of the ECR (FECC).

(d) Sets the NP and ID bits of the PSW and clears the AE bit.

(e) Jumps to address FFFFFFD0H (NMI handler address).

Exception occurs

PSW.NP

PSW.EP

0

0

1

1

Fatal exception

Machine fault status
Address 00000000H source code
Address 00000004H current PSW
Address 00000008H current PC

Halt

Duplexed exception

Jumps to handler address Jumps to handler address
(address FFFFFFD0H)

EIPC
EIPSW
ECR.EICC
PSW.EP
PSW.ID
PSW.AE

 restore PC
 PSW
 exception code
 1
 1
 0

FEPC
FEPSW
ECR.FECC
PSW.NP
PSW.ID
PSW.AE

 restore PC
 PSW
 exception code
 1
 1
 0

119

CHAPTER 6 INTERRUPT AND EXCEPTION

6.2 Interrupt Processing

6.2.1 Maskable interrupt

If a maskable interrupt is caused to occur by the INT input, the processor performs the processing described

below, and transfers control to the handler routine. The EIPC and EIPSW are used to save the contents of the

PC and PSW.

The maskable interrupt is masked by logical sum of the NP, EP, and ID of the PSW. Moreover, the interrupt

is not accepted if the interrupt level n is lower than the interrupt enable level (I3-I0) of the PSW (n < I3-I0).

Therefore, the interrupt of the highest level (n = 15) cannot be disabled by the interrupt enable level.

(1) Saves the restore PC to the EIPC.

(2) Saves the current PSW to the EIPSW.

(3) Writes the exception code to the lower 16 bits of the ECR (EICC).

(4) Sets the EP and ID bits of the PSW and clears the AE bit.

(5) Sets a value resulting from adding 1 to the level n of the interrupt accepted (i.e., n+1) to the I (I3-I0) field

of the PSW. However, sets 15 to the I field if the level of the accepted interrupt is the highest (n = 15).

(6) Jumps to the handler address.

120

CHAPTER 6 INTERRUPT AND EXCEPTION

Maskable interrupt (INT) occurs

PSW.NP

PSW.ID

0

0

1

1

Jumps to handler address

EIPC
EIPSW
ECR.EICC
PSW.EP
PSW.ID
PSW.AE
Sets PSW. I3-I0

 restore PC
 PSW
 exception code
 1
 1
 0

Ignored

Ignored

Ignored

Ignored

1

0

PSW.EP

Interrupt Level
<Interrupt enable Level

 ≥Interrupt enable level

121

CHAPTER 6 INTERRUPT AND EXCEPTION

6.2.2 Non-maskable interrupt

If the non-maskable interrupt is caused to occur by the NMI input, the processor performs the processing

described below and transfers control to the handler routine. The FEPC and FEPSW are used to save the contents

of the PC and PSW. If another non-maskable interrupt request occurs while a non-maskable interrupt is processed

(the NP bit of the PSW is 1), the interrupt request is internally held by the processor (a non-maskable interrupt

request that occurs during a period in which the latch is cleared by the internal processing immediately after the

start of processing the first non-maskable interrupt is not held to the internal latch of the processor). At this time,

if the NP bit of the PSW is cleared to 0 by using the RETI and LDSR instructions, new non-maskable interrupt

processing is started by the non-maskable interrupt request internally held by the processor.

(1) Saves the restore PC to the FEPC.

(2) Saves the current PSW to the FEPSW.

(3) Writes the exception code to the higher 16 bits of the ECR (FECC).

(4) Sets the NP and ID bits of the PSW and clears the AE bit.

(5) Jumps to address FFFFFFD0H (NMI handler address).

Jumps to handler address
(address FFFFFFD0H)

FEPC
FEPSW
ECR.FECC
PSW.NP
PSW.ID
PSW.AE

 restore PC
 PSW
 exception code
 1
 1
 0

PSW.NP
1

0

Non-maskable interrupt (NMI) occurs

Interrupt request is internally held.
Processing is started when NP of
PSW is cleared to 0.

122

CHAPTER 6 INTERRUPT AND EXCEPTION

6.3 Returning from Exception/Interrupt

To return execution from an exception event other than the fatal exception, the RETI instruction is used.

(1) If NP of PSW = 1, the restore PC and PSW are restored from the FEPC and FEPSW; if NP = 0, the PC

and PSW are restored from the EIPC and EIPSW.

(2) Restores the restore PC and PSW, and jumps to the PC.

PC
PSW

 EIPC
 EIPSW

PSW.NP
1

0

RETI instruction

PC
PSW

 FEPC
 FEPSW

Jumps to PCJumps to PC

123

CHAPTER 6 INTERRUPT AND EXCEPTION

6.4 Priority

6.4.1 Priorities of interrupts and exceptions

The following table shows the priorities of the interrupts and exceptions. If two or more interrupts or exceptions

occur simultaneously, they are processed according to their priorities.

Table 6-3 Priorities of Interrupts and Exceptions

RESET NMI INT AD-TR TRAP I-OPC DIV0 FLOAT

RESET * * * * * * *

NMI ✕ <- <- <- <- <- <-

INT ✕ • <- <- <- <- <-

AD-TR ✕ • • <- <- <- <-

TRAP ✕ • • • – – –

I-OPC ✕ • • • – – –

DIV0 ✕ • • • – – –

FLOAT ✕ • • • – – –

RESET : Reset

NMI : Non-maskable interrupt

INT : Maskable interrupt

AD-TR : Address trap

TRAP : Trap instruction

I-OPC : Illegal op code

DIV0 : Zero division

FLOAT : Floating-point exceptions (invalid operation, zero division, overflow, and reserved operand exceptions)

* : Item shown on the left ignores the item above.

✕ : Item shown on the left is ignored by the item above.

– : Item shown on the left does not occur simultaneously with the item above.

<- : Item shown on the left has a higher priority than the item above.

• : Item shown above has a higher priority than the item shown on the left.

124

CHAPTER 6 INTERRUPT AND EXCEPTION

6.4.2 Priorities of floating-point exceptions

Table 6-4 shows the priorities of the floating-point exceptions.

Table 6-4 Priorities of Floating-Point Exceptions

FRO FIV FZD FOV FUD FPR

FRO * * * – –

FTV ✕ * * – –

FZD ✕ ✕ * – –

FOV ✕ ✕ ✕ – –

FUD – – – – –

FPR – – – – –

FRO : Floating-point reserved operand

FIV : Floating-point invalid operation

FZD : Floating-point zero division

FOV : Floating-point overflow

FUD : Floating-point underflow

FPR : Floating-point precision degradation

* : Item shown on the left ignores the item above.

✕ : Item shown on the left is ignored by the item above.

– : Item shown on the left does not occur simultaneously with the item above.

Remark The FUD and FPR do not occur on V810 family.

6.4.3 Interrupt execution timing

An interrupt is accepted when an instruction is executed. However, if the instruction takes 2 or more clocks

to be executed, the interrupt is accepted during the period of the last 1 clock of the instruction. Therefore, if an

interrupt request is issued while no instruction is executed (in wait or bus hold status), the interrupt is accepted

when the next instruction is executed.

125

CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS

CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS

These functions serve to inspect the contents of the internal instruction cache memory of the V810 family.

(1) Cache configuration

Fig. 7-1 shows the configuration of the internal instruction cache of the V810 family.

Fig. 7-1 Cache Configuration

Capacity
Mapping method
Block size
Subblock size

:
:
:
:

1K bytes
Direct mapping
8 bytes
4 bytes

TAG Index Offset

31 10 9 3 2 0

Memory address

Tag memory
(ICHT27-ICHT0)

Data memory
(ICHD31-ICHD0)

.
.
.

.
.
.

.
.

.
.
.
.

.

27 22 21

TAG31-TAG10

0

Valid bit (1 bit for each 4 bytes)

NECRV (reserved by NEC)

Entry 0

Entry 1

Entry 127

128 entries

.

128 blocks

31 0

Block
(8 bytes)

Subblock (4 bytes)

126

CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS

(2) Inspection method

Control the cache control word in the following procedure by using the LDSR instruction:

<1> Prepare data to be restored to the cache.

<2> Clear the ICE bit to “0” to disable the cache.

<3> Set the first address of the restore data in the SA field, and at the same time, set the ICR bit to

“1” to start executing restoring.

<4> Set the first address of the dump area in the SA field, and at the same time, set the ICD bit to “1”

to start dump execution.

<5> Inspect the contents of the cache dumped to the dump area.

<6> Set the start entry number that clears the cache and the number of entries to be cleared in the

CEN and CEC fields, and at the same time, set the ICC bit to “1” to start execution of clearing (all

the entries must be eventually cleared).

<7> Set the ICE bit to “1” to enable the cache.

While the cache is dumped, restored, or cleared, interrupts are disabled. An interrupt request generated during

this period is internally held until the processing ends. Therefore, start of the interrupt processing is delayed (a

maskable interrupt is ignored unless all the NP, EP, and ID flags of the PSW are “0”).

The interrupt disable period can be shortened by processing each entry by using the CEN and CEC fields.

However, all the entries must be eventually cleared.

127

CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS

Fig. 7-2 Cache Dump Format

.
.

ICHD31-ICHD0

Subblock 0

Subblock 1

0 NECRV Valid bit TAG31-TAG10

31 28 27 24 23 22 21 0

Block 0

Block 1

Block 127

Entry 0

Entry 1

Entry 127

ICHT27-ICHT0

Address

SA+0

SA+4

SA+8

SA+12

SA+1016

SA+1020

SA+1024

SA+1532

31 0

128

CHAPTER 7 CACHE DUMP/RESTORE FUNCTIONS

[MEMO]

129

CHAPTER 8 DEBUG SUPPORT FUNCTION

CHAPTER 8 DEBUG SUPPORT FUNCTION

The address trap function is made valid by setting an address (TA: Trap Address) at which a trap is to occur

to the address trap register (ADTRE), and setting the AE bit of the PSW.

When the program is executed with the address trap function enabled, and if the current contents of the PC

(= first address of an instruction) coincide with the trap address (TA), the V810 family performs exception

processing and transfers control to an address trap handler routine (address FFFFFFC0H).

130

CHAPTER 8 DEBUG SUPPORT FUNCTION

[MEMO]

131

CHAPTER 9 RESET

CHAPTER 9 RESET

When the RESET pin goes low, the system reset is triggered, and each on-chip hardware is initialized.

9.1 Initialization

When the RESET pin goes low, the system reset is triggered, and each hardware register is initialized as shown

in Table 9-1. When the RESET goes high, the device is released from the reset state and the program execution

is started. Initialize the contents of each register as required in the program.

Table 9-1 Register Status after Reset

Hardware Names and Symbols Status after Reset

Program counter PC FFFFFFF0H

Interrupt status saving register EIPC Undefined

EIPSW

NMI status saving register FEPC Undefined

FEPSW

Interrupt source register (ECR) FECC 0000H

EICC FFF0H

Program status word PSW 00008000H

General-purpose register r0 00000000H fixed

r1-r31 Undefined

9.2 Starting Up

The V810 family starts the execution of the program from FFFFFFF0H when reset. Immediately after reset,

the interrupt request is not acknowledged. To use interrupt for the program, set the NP bit of the program status

word (PSW) to 0.

132

CHAPTER 9 RESET

[MEMO]

133

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

This appendix lists the mnemonics of the instructions explained in this manual. In the table shown on the

following pages, the instruction mnemonics are listed in alphabetical order, so that brief explanations for necessary

instructions can be found in the same way as consulting a dictionary.

Instruction mnemonic Operand Format CY OV S Z Instruction function

Legend

ADD reg1, reg2 I * * * *

Instruction Operand name Instruction Flag operation

mnemonic format – Not affected

* Affected

0 Cleared to 0

1 Set to 1

Name Meaning

reg1 General-purpose register (used as source register)

reg2 General-purpose register (mainly used as destination register. Some registers are used as source

registers)

imm5 5-bit immediate

imm16 16-bit immediate

disp9 9-bit displacement

disp16 16-bit displacement

disp26 26-bit displacement

reqID System register number

vector adr Trap handler address corresponding to trap vector

134

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (1/7)

Instruction
Operand Format CY OV S Z Instruction function Page

mnemonic

ADD reg1, reg2 I * * * * Addition. Adds word data of reg1 to word data of 41

reg2 and stores result to reg2.

ADD imm5, reg2 II * * * * Addition. Adds value sign-extended from 5-bit 41

immediate value to word length to word data of

reg2, and stores result to reg2.

ADDF.S reg1, reg2 VII * 0 * * Floating-point addition. Adds single-precision 42

floating-point data of reg1 and reg2, reflects result

on flags, and stores result to reg2.

ADDI imm16, reg1, reg2 V * * * * Addition. Adds value sign-extended from 16-bit 44

immediate value to word length to word data of

reg1 and stores result to reg2.

AND reg1, reg2 I – 0 * * AND. ANDs word data of reg2 and reg1, and 45

stores result to reg2.

ANDBSU – II – – – – Transfer with AND of bit string. ANDs source bit 46

string, and destination bit string, and transfers

result to destination bit string.

ANDI imm16, reg1, reg2 V – 0 0 * AND. ANDs word data of reg1 with value zero- 47

extended from 16-bit immediate value to word

length, and stores result to reg2.

ANDNBSU – II – – – – Transfer with AND NOT of bit string. ANDs NOTed 48

source bit string, with destination bit string, and

transfers result to destination bit string.

BC disp9 III – – – – Conditional branch (if Carry). PC relative branch 50

BE disp9 III – – – – Conditional branch (if Equal). PC relative branch 50

BGE disp9 III – – – – Conditional branch (if Greater than or Equal). 50

PC relative branch

BGT disp9 III – – – – Conditional branch (if Greater than). 50

PC relative branch

BH disp9 III – – – – Conditional branch (if Higher). PC relative branch 50

BL disp9 III – – – – Conditional branch (if Lower). PC relative branch 50

BLE disp9 III – – – – Conditional branch (if Less than or Equal). 50

PC relative branch

BLT disp9 III – – – – Conditional branch (if Less than). PC relative branch 50

BN disp9 III – – – – Conditional branch (if Negative). PC relative branch 50

BNC disp9 III – – – – Conditional branch (if Not Carry). PC relative branch 50

BNE disp9 III – – – – Conditional branch (if Not Equal). PC relative branch 50

BNH disp9 III – – – – Conditional branch (if Not Higher). 50

PC relative branch

BNL disp9 III – – – – Conditional branch (if Not Lower). 50

PC relative branch

BNV disp9 III – – – – Conditional branch (if Not Overflow). 50

PC relative branch

BNZ disp9 III – – – – Conditional branch (if Not Zero). PC relative branch 50

BP disp9 III – – – – Conditional branch (if Positive). PC relative branch 50

135

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (2/7)

Instruction
Operand Format CY OV S Z Instruction function Page

mnemonic

BR disp9 III – – – – Unconditional branch. PC relative branch 50

BV disp9 III – – – – Conditional branch (if Overflow). PC relative branch 50

BZ disp9 III – – – – Conditional branch (if Zero). PC relative branch 50

CAXI disp16 [reg1], reg2 VI * * * * Inter-processor synchronization instruction for 51

multi-processor system

CMP reg1, reg2 I * * * * Compare. Compares word data of reg2 with word 53

data of reg1, and indicates result to flags.

Comparison is made by subtracting contents of

reg1 from word data of reg2.

CMP imm5, reg2 II * * * * Compare. Compares word data of reg2 with value 53

sign-extended from 5-bit immediate value to word

length, and indicates result to flags. Comparison is

made by subtracting value sign-extended from 5-bit

immediate value to word length from word data of

reg2.

CMPF.S reg1, reg2 VII * 0 * * Floating-point compare. Compares single-precision 54

data of reg1 and reg2, and indicates result to flag.

Comparison is made by subtracting floating-point

data of reg1 from floating-point data of reg2.

CVT.SW reg1, reg2 VII – 0 * * Type conversion of floating-point data to integer. 55

Converts single-precision floating-point data of reg1

to integer, reflects result on flags, and stores result

to reg2.

CVT.WS reg1, reg2 VII * 0 * * Type conversion of integer to floating-point data. 57

Converts integer data of reg1 to single-precision

floating-point data, reflects result on flags, and

stores result to reg2.

DIV reg1, reg2 I – * * * Signed divide. Divides word data of reg2 by word 58

data of reg1 (signed), and stores quotient to reg2

and remainder to r30. Division is performed so that

sign of remainder matches sign of dividend.

DIVF.S reg1, reg2 VII * 0 * * Floating-point divide. Divides single-precision 59

floating-point data of reg2 by single-precision

floating-point data of reg1, reflects result on

flags, and stores result to reg2.

DIVU reg1, reg2 I – 0 * * Unsigned divide. Divides word data of reg2 by 61

word data of reg1 without sign, and stores quotient

to reg2 and remainder to r30. Division is performed

so that sign of remainder matches sign of dividend.

HALT – II – – – – Processor halt. 62

IN.B disp16 [reg1], reg2 VI – – – – Port input. Adds data of reg1 and data sign- 63

extended from 16-bit displacement to word length to

create 32-bit unsigned port address. Byte data is

read from created port address, zero-extended to

word data, and stored to reg2.

136

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

IN.H disp16 [reg1], reg2 VI – – – – Port input. Adds data of reg1 and data sign- 63

extended from 16-bit displacement to word length

to create 32-bit unsigned port address. Halfword

data is read from created port address, zero-

extended to word length, and stored to reg2. Bit 0

of 32-bit unsigned port address is masked with 0.

IN.W disp16 [reg1], reg2 VI – – – – Port input. Adds data of reg1 and data sign- 63

extended from 16-bit displacement to word length

to create 32-bit unsigned port address. Word data is

read from created port address and stored to reg2.

Bits 0 and 1 of 32-bit unsigned port address are

masked with 0.

JAL disp26 IV – – – – Jump and link. Saves value resulting from adding 64

4 to current PC into r31, sets value resulting from

adding PC to the value sign-extended from 26-bit

displacement to word length, and transfers control.

Bit 0 of 26-bit displacement is masked with 0.

JMP [reg1] I – – – – Register indirect unconditional branch. Transfers 65

control to address specified by reg1. Bit 0 of

address is masked with 0.

JR disp26 IV – – – – Unconditional branch. Adds current PC to value 66

sign-extended from 26-bit displacement to word

length, and transfers control to that value. Bit 0

of 26-bit displacement is masked with 0.

LD.B disp16 [reg1], reg2 VI – – – – Byte load. Adds data of reg1 and data sign- 67

extended from 16-bit displacement to word length

to create 32-bit unsigned address. Byte data is

read from created address, sign-extended to word

length, and stored to reg2.

LD.H disp16 [reg1], reg2 VI – – – – Halfword load. Adds data of reg1 and data sign- 67

extended from 16-bit displacement to word length

to create 32-bit unsigned address. Halfword data is

read from created 32-bit address, sign-extended to

word length, and stored to reg2. Bit 0 of 32-bit

unsigned address is masked with 0.

LD.W disp16 [reg1], reg2 VI – – – – Word load. Adds data of reg1 and data sign- 67

extended from 16-bit displacement to word length

to create 32-bit unsigned address. Word data is

read from created address and stored to reg2. Bits 0

and 1 of 32-bit unsigned address are masked with 0.

LDSR reg2, regID II * * * * Load to system register. Sets word data of reg2 to 68

system register specified by system register number

(regID).

Table A-1 Instruction Mnemonics (alphabetical order) (3/7)

Instruction
Operand Format CY OV S Z Instruction function Page

mnemonic

137

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

MOV reg1, reg2 I – – – – Data transfer. Copies and transfers word data of 69

reg1 to reg2.

MOV imm5, reg2 II – – – – Data transfer. Copies and transfers value sign- 69

extended from 5-bit immediate value to word length,

to reg2.

MOVBSU – II – – – – Bit string transfer. Transfers source bit string to 70

destination string.

MOVEA imm16, reg1, reg2 V – – – – Add. Adds word data of reg1 and value sign- 71

extended from 16-bit displacement to word

length, and stores result to reg2.

MOVHI imm16, reg1, reg2 V – – – – Add. Adds word data of reg1 to word data 72

consisting of higher 16 bits (16-bit immediate) and

lower 16 bits (0), and stores result to reg2.

MUL reg1, reg2 I – * * * Signed multiply. Multiplies word data of reg2 by 73

word data of reg1 (signed) and stores higher 32 bits

of result (doubleword length) to r30 and lower 32

bits to reg2.

MULF.S reg1, reg2 VII * 0 * * Floating-point multiply. Multiplies single-precision 74

floating-point data of reg2 by single-precision

floating-point data of reg1, reflects result on flags,

and stores result to reg2.

MULU reg1, reg2 I – * * * Unsigned multiply. Multiplies word data of reg2 76

by word data of reg1 as unsigned data, and stores

higher 32 bits of result (doubleword length) to r30

and lower 32 bits to reg2.

NOP – III – – – – No operation. 89

NOT reg1, reg2 I – 0 * * NOT. NOTs word data of reg1 (1's complement) 77

and stores result to reg2.

NOTBSU – II – – – – Transfer with NOT of bit string. NOTs source bit 78

string (inverts 1 and 0) and transfers result to

destination bit string.

OR reg1, reg2 I – 0 * * OR. ORs word data of reg2 with word data of reg1 79

and stores result to reg2.

ORBSU – II – – – – Transfer with OR of bit string. ORs source bit string 80

with destination bit string, and transfers result to

destination bit string.

ORI imm16, reg1, reg2 V – 0 * * OR. ORs word data of reg1 with value zero-extended 81

from 16-bit immediate value to word length, and

stores result to reg2.

ORNBSU – II – – – – Transfer with NOT OR of bit string. ORs NOTed 82

source bit string with destination bit string, and

transfers result to destination bit string.

Table A-1 Instruction Mnemonics (alphabetical order) (4/7)

Instruction
Operand Format CY OV S Z Instruction function Page

mnemonic

138

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

OUT.B reg2, disp16 [reg1] VI – – – – Port output. Adds data of reg1 and data sign- 83

extended from 16 bits to word length to create 32-bit

unsigned port address, and outputs data of lower

1 byte of general-purpose register reg2 to created

port address.

OUT.H reg2, disp16 [reg1] VI – – – – Port output. Adds data of reg1 and data sign- 83

extended from 16-bit displacement to word length

to create 32-bit unsigned port address, and outputs

data of lower 2 bytes of general-purpose register

reg2 to created port address. Bit 0 of 32-bit unsigned

address is masked with 0.

OUT.W reg2, disp16 [reg1] VI – – – – Port output. Adds data of reg1 and data sign- 83

extended from 16-bit displacement to word length

to create 32-bit unsigned port address, and outputs

word data of general-purpose register reg2 to

created port address. Bits 0 and 1 of 32-bit

unsigned port address are masked with 0.

RETI – II * * * * Return from trap or interrupt routine. Restores 84

restore PC and PSW from system register, and

returns execution from trap or interrupt routine.

SAR reg1, reg2 I * 0 * * Arithmetic left shift. Arithmetically shifts to left 85

word data of reg2 by number specified by lower

5 bits or reg1 (copies value of MSB sequentially to

MSB), and writes result to reg2.

SAR imm5, reg2 II * 0 * * Arithmetic right shift. Arithmetically shifts to right 85

word data of reg2 by number specified by lower 5

bits of reg1, and writes result to reg2.

SCH0BSU – II – – – * Bit string 0 search. Searches surce bit string, stores 86

SCH0BSD – II – – – * bit address 1 bit before 0 first found to r30 and r27, 86

and stores number of bits skipped until detection to

r29, and value resulting from subtraction of number

of skipped bit to r28.

SCH1BSU – II – – – – Bit string 1 search. Searches source bit string, stores 88

SCH1BSD – II – – – – bit address 1 bit before 1 first found to r30 and r27, 88

and stores number of bits skipped until detection to

r29, and value resulting from subtraction of number

of skipped bit to r28.

SETF imm5, reg2 I – – – – Set flag condition. Stores 1 to reg2 if condition 90

indicated by lower 4 bits of 5-bit immediate coincides

with condition flag; otherwise, stores 0 to reg2.

SHL reg1, reg2 I * 0 * * Logical left shift. Logically shifts to left word data 92

of reg2 by number specified by lower 5 bits of reg1

(sends 0 to LSB side), and writes result to reg2.

Table A-1 Instruction Mnemonics (alphabetical order) (5/7)

Instruction
Operand Format CY OV S Z Instruction function Page

mnemonic

139

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (6/7)

Instruction
Operand Format CY OV S Z Instruction function Page

mnemonic

SHL imm5, reg2 II * 0 * * Logical left shift. Logically shifts to left word data of 92

reg2 by number specified by value zero-extended

from 5-bit immediate value to word length, and

writes result to reg2.

SHR reg2, reg2 I * 0 * * Logical right shift. Logically shifts to right word data 93

of reg2 by number specified by lower 5 bis of reg1

(sends 0 to MSB side), and writes result to reg2.

SHR imm5, eg2 II * 0 * * Logical right shift. Logically shifts to right word data 93

of reg2 by number specified by value zero-extended

from 5-bit immediate value to word length, and

writes result to reg2.

ST.B reg2, disp16 [reg1] VI – – – – Byte store. Adds data of reg1 and data sign- 94

extended from 16-bit displacement to word length

to create 32-bit unsigned address, and stores data of

lower 1 byte of reg2 to created address.

ST.H reg2, disp16 [reg1] VI – – – – Halfword store. Adds data of reg1 and data sign- 94

extended from 16-bit displacement value to word

length to create 32-bit unsigned address, and stores

data of lower 2 bytes of reg2 to created address. Bit

0 of 32-bit unsigned address is masked with 0.

ST.W reg2, disp16[reg1] VI – – – – Word store. Adds data of reg1 and data sign- 94

extended from 16-bit displacement to word length to

create 32-bit unsigned address, and stores word data

of reg2 to created address. Bits 0 and 1 of 32-bit

unsigned address are masked with 0.

STSR regID, reg2 II – – – – Store contents of system register. Sets contents of 95

system register specified by system register number

(regID) to reg2.

SUB reg1, reg2 I * * * * Subtract. Subtracts word data of reg1 from word 96

data of reg2, and stores result to reg2.

SUBF.S reg1, reg2 VII * 0 * * Subtract. Subtracts single-precision floating-point 97

data of reg1 from single-precision floating-point data

of reg2, reflects result on flags, and stores result to

reg2.

TRAP vector II – – – – Software trap. Saves restore PC and PSW into 99

system register (to FEPC and FEPSW if EP flag of

PSW is 0; to EIPC and EIPSW if EP flag is 0), sets

exception code to ECR (to FECC and FEPSW if EP flag

of PSW is 1; to EICC if EP flag is 0), sets flags of PSW

(sets NP and ID flag and clears AE flag if EP flag of

PSW is 1; sets EP and ID flags and clears AE flag if

EP flag is 0), jumps to address of trap handler

corresponding to trap vector (0-31) specified by

vector, and starts exception processing.

140

APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)

Table A-1 Instruction Mnemonics (alphabetical order) (7/7)

Instruction
Operand Format CY OV S Z Instruction function Page

mnemonic

TRNC.SW reg1, reg2 VII – 0 * * Convert floating-point data to integer. Converts 101

single-precision floating-point data of reg1 to integer

data, reflects result on flags, and stores result to reg2.

XOR reg1, reg2 I – 0 * * Exclusive OX. Exclusive-ORs word data of reg2 103

with word data of reg1 and stores result to reg2.

XORBSU – II – – – – Transfer with exclusive-OR of bit string. Exclusive- 104

ORs source bit string with destination bit string, and

transfers result to destination bit string.

XORI imm16, reg1, reg2 V – 0 * * Exclusive OR. Exclusive-ORs word data of reg1 with 105

value zero-extended from 16-bit immediate value to

word length, and stores result to reg2.

XORNBSU – II – – – – Transfer of NOT exclusive OR of bit string. 106

Exclusive-ORs NOTed source bit string with

destination bit string, and transfers result to

destination bit string.

141

APPENDIX B INSTRUCTION LIST

APPENDIX B INSTRUCTION LIST

Table B-1 Mnemonic List

Load/store instructions

LD.B Load Byte

LD.H Load Halfword

LD.W Load Word

ST.B Store Byte

ST.H Store Halfword

ST.W Store Word

Integer arithmetic operation/logical

operation instructions

(2-operand register)

MOV Move

SUB Subtract

ADD Add

CMP Compare

OR OR

AND AND

XOR Exclusive-OR

NOT NOT

SHL Shift Logical Left

SHR Shift Logical Right

SAR Shift Arithmetic Right

MUL Multiply

DIV Divide

MULU Multiply Unsigned

DIVU Divide Unsigned

(2-operand immediate)

MOV Move

ADD Add

CMP Compare

SHL Shift Logical Left

SHR Shift Logical Right

SAR Shift Arithmetic Right

SETF Set Flag Condition

(3-operand)

ADDI Add

MOVEA Add

ORI OR

ANDI AND

XORI Exclusive-OR

MOVHI Add

Input/output instructions

IN.B Input Byte

IN.H Input Halfword

IN.W Input Word

OUT.B Output Byte

OUT.H Output Halfword

OUT.W Output Word

Program control instructions

JMP Jump

JR Jump Relative

JAL Jump end Link

BGT Branch on Greater than signed

BGE Branch on Greater than or Equal signed

BLT Branch on Less than signed

BLE Branch on Less than or Equal signed

BH Branch on Higher

BNH Branch on Not Higher

BL Branch on Lower

BNL Branch on Not Lower

BE Branch on Equal

BNE Branch on Not Equal

BV Branch on Overflow

BNV Branch on No Overflow

BN Branch on Negative

BP Branch on Positive

BC Branch on Carry

BNC Branch on No Carry

BZ Branch on Zero

BNZ Branch on Not Zero

BR Branch Always

NOP No Branch (No Operation)

Bit string instructions

SCH0BSU Search Bit 0 Upward

SCH0BSD Search Bit 0 Downward

SCH1BSU Search Bit 1 Upward

SCH1BSD Search Bit 1 Downward

MOVBSU Move Bit String Upward

NOTBSU Not Bit String Upward

ANDBSU AND Bit String Upward

ANDNBSU AND Not Bit String Upward

ORBSU OR Bit String Upward

ORNBSU OR Not Bit String Upward

XORBSU Exclusive-OR Bit String Upward

XORNBSU Exclusive-OR Not Bit String Upward

Floating-point operation instructions

CMPF.S Compare Floating Short

CVT.WS Convert Word Integer to Short Floating

CVT.SW Convert Short Floating to Word Integer

ADDF.S Add Floating Short

SUBF.S Subtract Floating Short

MULF.S Multiply Floating Short

DIVF.S Divide Floating Short

TRNC.SW Truncate Short Floating to Word Integer

Special instructions

LDSR Load System Register

STSR Store System Register

TRAP Trap

RETI Return from Trap or Interrupt

CAXI Compare and Exchange Interlocked

HALT Halt

Op Code Function Op Code Function

142

APPENDIX B INSTRUCTION LIST

Table B-2 Instruction Set

Op code Instruction format Format

000000 MOV reg1, reg2 I

000001 ADD reg1, reg2 I

000010 SUB reg1, reg2 I

000011 CMP reg1, reg2 I

000100 SHL reg1, reg2 I

000101 SHR reg1, reg2 I

000110 JMP [reg1] I

000111 SAR reg1, reg2 I

001000 MUL reg1, reg2 I

001001 DIV reg1, reg2 I

001010 MULU reg1, reg2 I

001011 DIVU reg1, reg2 I

001100 OR reg1, reg2 I

001101 AND reg1, reg2 I

001111 NOT reg1, reg2 I

010000 MOV imm5, reg2 II

010001 ADD imm5, reg2 II

010010 SETF imm5, reg2 II

010011 CMP imm5, reg2 II

010100 SHL imm5, reg2 II

010101 SHR imm5, reg2 II

010110 –

010111 SAR imm5, reg2 II

011000 TRAP vector II

011001 RETI II

011010 HALT II

011011 –

011100 LDSR reg2, regID II

011101 STSR regID, reg2 II

011110 –

011111 Bstr II

100$$$$ Bcond disp9 III

101000 MOVEA imm16, reg1, reg2 V

101001 ADDI imm16, reg1, reg2 V

101010 JR disp26 IV

101011 JAL disp26 IV

101100 ORI imm16, reg1, reg2 V

101101 ANDI imm16, reg1, reg2 V

101110 XORI imm16, reg1, reg2 V

101111 MOVHI imm16, reg1, reg2 V

110000 LD.B disp16 [reg1], reg2 VI

110001 LD.H disp16 [reg1], reg2 VI

110010 –

110011 LD.W disp16 [reg1], reg2 VI

110100 ST.B reg2, disp16 [reg1] VI

110101 ST.H reg2, disp16 [reg1] VI

110110 –

110111 ST.W reg2, disp16 [reg1] VI

111000 IN.B dips16 [reg1], reg2 VI

111001 IN.H disp16 [reg1], reg2 VI

111010 CAXI dipa16 [reg1], reg2 VI

111011 IN.W disp16 [reg1], reg2 VI

111100 OUT.B reg2, disp16 [reg1] VI

111101 OUT.H reg2, disp16 [reg1] VI

111110 Fpp reg1, reg2 VII

111111 OUT,W reg2, disp16 [reg1] VI

143

APPENDIX C OP CODE MAP

APPENDIX C OP CODE MAP

(a) Op code

bit 12..10

bit 15..13 0 1 2 3 4 5 6 7 Format

0 MOV ADD SUB CMP SHL SHR JMP SAR
I

1 MUL DIV MULU DIVU OR AND XOR NOT

2 MOV ADD SETF CMP SHL SHR SAR
II

3 TRAP RETI HALT LDSR STSR Bstr

4 Bcond III

5 MOVEA ADDI JR JAL ORI ANDI XORI MOVHI IV/V

6 LD.B LD.H LD.W ST.B ST.H ST.W VI

7 IN.B IN.H CAXI IN.W OUT.B OUT.H Fpp OUT.W VI/VII

(b) Branch instruction (condition code)

bit 11..9

bit 12 0 1 2 3 4 5 6 7

0 BV BC/BL BZ/BE BNH BN BR BLT BLE

1 BNV BNC/BNL BNZ/BNE BH BP NOP BGE BGT

(c) Bit string manipulation instruction (sub-op code)

bit 2..0

bit 4..3 0 1 2 3 4 5 6 7

0 SCH0BSU SCH0BSD SCH1BSU SCH1BSD

1 ORBSU ANDBSU XORBSU MOVBSU ORNBSU ANDNBSU XORNBSU NOTBSU

2

3

144

APPENDIX C OP CODE MAP

(d) Floating-point operation instruction (sub-op code)

bit 28..26

bit 31..29 0 1 2 3 4 5 6 7

0 CMPF.S CVT.WS CVT.SW ADDF.S SUBF.S MULF.S DIVF.S

1 TRNC.SW

2

3

4

5

6

7

	COVER
	INTRODUCTION
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES

	CHAPTER 1 OVERVIEW
	1.1 Features
	1.2 Products Development

	CHAPTER 2 REGISTER SET
	2.1 Program Register Set
	2.1.1 General-purpose registers
	2.1.2 Program counter

	2.2 System Register Set
	2.2.1 Exception/ interrupt status saving registers (EIPC/ EIPSW)
	2.2.2 NMI/ duplexed exception status saving register (FEPC/ FEPSW)
	2.2.3 Exception source register (ECR)
	2.2.4 Program status word (PSW)
	2.2.5 Processor ID register (PIR)
	2.2.6 Task control word (TKCW)
	2.2.7 Cache control word (CHCW)
	2.2.8 Address trap register (ADTRE)
	2.2.9 System register number

	CHAPTER 3 DATA TYPES
	3.1 Data Types Supported
	3.1.1 Data type and addressing
	3.1.2 Integer
	3.1.3 Unsigned integer
	3.1.4 Bit string
	3.1.5 Single-precision floating-point data

	3.2 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	4.1 Memory and I/ O Map
	4.2 Addressing Mode
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTION FORMAT AND INSTRUCTION SET
	5.1 Instruction Format
	5.2 Instruction Outline
	5.3 Instruction Set
	5.4 Instruction Execution Clock Cycles
	5.4.1 Normal instruction
	5.4.2 Search bit string instructions
	5.4.3 Arithmetic bit string instructions

	CHAPTER 6 INTERRUPT AND EXCEPTION
	6.1 Exception Processing
	6.2 Interrupt Processing
	6.2.1 Maskable interrupt
	6.2.2 Non-maskable interrupt

	6.3 Returning from Exception/ Interrupt
	6.4 Priority
	6.4.1 Priorities of interrupts and exceptions
	6.4.2 Priorities of floating-point exceptions
	6.4.3 Interrupt execution timing

	CHAPTER 7 CACHE DUMP/ RESTORE FUNCTIONS
	CHAPTER 8 DEBUG SUPPORT FUNCTION
	CHAPTER 9 RESET
	9.1 Initialization
	9.2 Starting Up

	APPENDIX A INSTRUCTION MNEMONIC (alphabetical order)
	APPENDIX B INSTRUCTION LIST
	APPENDIX C OP CODE MAP

