
Affine mode graphics on the NintendoAffine mode graphics on the Nintendo
Virtual BoyVirtual Boy

Part one: A brief introduction

By David Tucker

http://www.goliathindustries.com/vb/

Revision 0.93, August 19th 2005

Table of Contents
Introduction..3
Matrices..3

Introduction to Matrices...3
Matrix Addition... 3
Matrix Multiplication...4
Further Reading..4

Affine Transforms..5
Introducing the affine transform.. 5
General Affine transform... 5
General forms of P... 5
General form of Dx..6
Conclusion... 7

The Virtual Boy and Affine Transforms..8
Introduction..8
Affine structures in the Virtual Boy...8
Fixed Point Math... 10
Scaling and Rotation.. 10
Pole Position on a budget...13

Affine mode graphics on the Nintendo Virtual boy: Introduction

Introduction
The affine mode transform is a powerful tool that can be used to generate pseudo 3D displays on the
Virtual Boy. If you have ever played Mario Kart on a SNES or a GBA than you have seen affine mode
at work. This is a brief tutorial intended to introduce the user to the world of affine.

Matrices

Introduction to Matrices
A matrix is a tool used to collect up the terms of an equation to simplify the manipulation and
description of that equation, sort of like a struct in C. A matrix is a two dimensional array with

m×n dimensions =[1 ⋯ n
⋮
m]

A vector is a subset of a matrix that fixes one dimension to one. For our purposes a vector can be

defined as an 1×m matrix =[1
⋮
m] and can be treated the same as a matrix. Given a series of

equations:

a=x y⋅t
b=d 2k /2

We can use matrices and vectors to represent the common terms in the equations. If we assign

Page 3 of 16

Affine mode graphics on the Nintendo Virtual boy: Introduction to Matrices

V=[a
b]

and

M=[x y⋅t
d 2 k /2]

than we can rewrite the above equation as V=M much simpler. You could also rewrite it as

[ab]=[x y⋅t
d 2 k /2]

if you want to expose the underlying detail of the matrix.

Matrix Addition
Matrices must have the same dimensions in order to add them together. For example we could add a

3×2 matrix A and a 3×2 matrix B together, but a 3×3 matrix C could not be added to
either A or B In order to add A and B simply add the corresponding elements in A and
B to each other.

A = [a b
c d
e f]

B = [g h
i j
k l]

AB = [ag bh
ci d j
ek f l]

Matrix Addition is commutative, in other words AB=BA

Matrix Multiplication
Matrices can be multiplied together if the left hand matrix has the same number of columns as the right
hand matrix has rows. For example, we could multiply a 1×2 matrix with a 2×2 matrix, which
would result in a 1×2 matrix, but we can not multiply a 2×2 matrix with a 1×2 matrix. In
order to multiply a matrix we multiply the rows of the first matrix with the columns in the second
matrix and sum up the results. It is easier to comprehend with an example:

Page 4 of 16

Affine mode graphics on the Nintendo Virtual boy: Matrix Multiplication

A = [a
b]

B = [c d
e f]

C = [g h
i j]

B⋅A = [acbd aebf]

B⋅C = [cgdi chdj
eg fi eh fj]

Multiplication is not commutative A⋅B≠B⋅A and as a final note, you can multiply a matrix by a
scaler (a single number). This results in every field in the matrix being multiplied by the scaler

A⋅s=[as bs
cs ds]

Further Reading
This should cover all that we need to know about matrices for this problem. If you want to know more,
I strongly urge you to pick up a book on Linear Algebra or take a course on it at your local college.

Page 5 of 16

Affine mode graphics on the Nintendo Virtual boy: Affine Transforms

Affine Transforms

Introducing the affine transform
An affine transform is a way to translate points from one coordinate space to another. There are several
properties to affine transforms: 1 to 1 mapping, parallel lines remain parallel, etc., but none of that
matters to us. For our purposes, an affine transform is a way to map a point on the display back into a
texture buffer, or the BGMap, in such a way that we can perform simple translations on the source
bitmap. For example, we can perform rotations, scales, shears, reflections, and, given some fancy
trickery, we can even generate pseudo 3D environments.

General Affine transform
If we define a transformation matrix

P=[pa pb

pc pd]
and a displacement vector

Dx=[d x

d y]
we can define the general affine transform as

[x '
y ']=P⋅[x

y]Dx
where

[x '
y '] is a point on the BGMap

and

[x
y] is a point on the display

filling in P and Dx results in

[x '
y ']=[pa pb

pc pd]⋅[x
y][d x

d y]
if we multiply out our equation we end up with

x '= pa⋅x pb⋅yd x

y '= pc⋅x pd⋅yd y

Page 6 of 16

Affine mode graphics on the Nintendo Virtual boy: General forms of P

General forms of P
The following are some general forms of P that we can place into the above equation, along with a
simple example of the result produced.

P normal=[1 0
0 1]

P scale=[sx 0
0 s y]

P reflectY=[−1 0
0 1]

P reflectD=[0 1
1 0]

P shear=[1 shx

sh y 1]

Page 7 of 16

Affine mode graphics on the Nintendo Virtual boy: General forms of P

P rotate=[cos  −sin 
sin  cos]

General form of Dx
The Dx vector is used to set the offset of the object being transformed, without it an object's center
of transformation is the upper left hand corner, and it is placed at the upper left hand corner of the
display as well.

Dx=Bg−P⋅Dsp
or expanded as

Dx=[bg x− pa⋅dspx pb⋅dsp y
bg y− pc⋅dspx pd⋅dsp y]

where Bg=[bg x

bg y] is the center point on the BGMap image and Dsp=[dspx

dsp y] is the center point on

the display.

Page 8 of 16

Affine mode graphics on the Nintendo Virtual boy: Conclusion

Conclusion
In order to pull off more complicated results, such as a rotation followed by a scale of an image, we can
combine the P matrices together via multiplication. Note, however, that the order that you place the
transforms in matters. First because a translate followed by a rotation does not produce the same result
as a rotation followed by a translation. Second because the image quality will change based on what
order you perform the operations. Basically, you want to perform the least destructive transformation
first in order to preserve the highest quality image. This concludes our discussion of theory, from here
on out it is all hardcore examples.

Page 9 of 16

Affine mode graphics on the Nintendo Virtual boy: The Virtual Boy and Affine Transforms

The Virtual Boy and Affine Transforms

Introduction
The virtual boy pulls some tricks with the affine equation in order to make things like pseudo 3D
environments easier to implement. First off, the VB computes a separate affine transform equation for
each line on the display bitmap so that you can easily change the parameters to the P and Dx
matrices on a line by line basis; this is stored in the param table on the Virtual Boy. Secondly, the VB
combined the P and Dx matrices together in order to save space in memory and to move some of
the multiplication out of the display render loop. I have defined the Virtual Boy's modified P matrix
as

P vb=[pa y⋅pbd x

pc y⋅pdd y]
filling in Dx gives us

P vb=[pa y⋅pbbg x− pa⋅dspx pb⋅dsp y
pc y⋅pdbg y− pc⋅dspx pd⋅dsp y]

Notice how the P vb precomputes the line for each affine transform. This makes sense since we have
one affine transform per line and it allows us to move the Dx vector into the P matrix. Otherwise,
we would need a separate Dx vector for each line or we would need to modify the Dx vector for
each line. This is how the Game Boy Advanced does things.

Affine structures in the Virtual Boy
The virtual boy defines a world entry as follows:

Page 10 of 16

Affine mode graphics on the Nintendo Virtual boy: Affine structures in the Virtual Boy

Table 1 - World entry format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LON RON BGM SCX SCY OVR END 0 0 BGMAP_BASE (0xD)

GX (-0xFFFF - 0x17F)

GP (-0x100 - 0x0FF)

GY (-0xFFFF - 0x0DF)

MX (-0xFFFF - 0xFFF)

MP (-0x100 - 0x0FF)

MY (-0xFFFF - 0xFFF)

W (0x000 - 0xFFF)

H (0x000 - 0xFFF)

PARAM_BASE (0x000 - 0xEBF)

OVERPLANE_CHARACTER

WRITING FORBIDDEN

WRITING FORBIDDEN

WRITING FORBIDDEN

WRITING FORBIDDEN

WRITING FORBIDDEN

There are three entries in the world entry that are specific to the Affine display mode.

First we must set the BGM type to Affine mode.

BGM - Sets the mode of the world
0 Normal BGMap

1 H-bias BGMap

2 Affine

3 OBJ

Next we need to set a pointer to the param table where we will store our P vb matrices. The param
table can be located anywhere between 0x00020000 and 0x0003D7FF. Notice however that this space
is shared with the world table, so you are probably better off locating the param table after 0x0003C000
if you do not want to limit the number of worlds available to you.

PARAM_BASE - Parameter Table Base pointer, the last 4 bits must be zero.
True_base = (Param_Base & 0xFFF0) * 2 + 0x00020000

The last setting is the OVR flag. This flag controls the wrapping of a BGMap. Basically, if you try to
index off of the end of your BGMap, you can either wrap to the beginning of the BGMap or you can fill
in the missing bits with zero. So, if we set the OVR flag, then we disable BGMap wrapping, and, if we
clear it, we enable the wrapping.

OVR - Turns off the display wrapping. If you retrieve a pixel from (515,32) on a single BGMap, it

Page 11 of 16

Affine mode graphics on the Nintendo Virtual boy: Affine structures in the Virtual Boy

would be retrieved from (3,32), if over was not enabled.

Once we have defined the PARAM_BASE, we need to fill in our param table. There is one param
table entry for every line of the image, so there are GY param table entries in total. Obviously, the pa,

pb_y, pc and pd_y entries correspond to the elements in P vb=[pa y⋅pbd x

pc y⋅pdd y] and parallax is a

horizontal shift that is applied to the display to generate a 3D effect just like GP and MP in the world
structure. At this time it is not known whether parallax is applied to X before multiplication with
P vb or after. The purpose of the last three entries in the param table are not known at this time.

Table 2 - Affine Param table entry

15 0

pb_y (fixed point 13.3)

paralax

pd_y (fixed point 13.3)

pa (fixed point 7.9)

pc (fixed point 7.9)

Unknown

Unknown

Unknown

Fixed Point Math
When representing fractional numbers, such as 1/3=0.33333 in a computer, you have two options:
floating point and fixed point. Floating point (float and double in C) is the standard way to represent
a fraction, but floating point math can be quite slow and, in video games, speed can be everything. So,
some bright individual came up with the idea of fixed point math. Basically, we take a 16 bit or 32 bit
number and declare that some number of the bits represent the fractional portion of the number. To
convert from an int or float to a fixed point number, we would multiply the int by 2x where X is the
number of bits given over to the fractional part in our fixed point number.

For an example lets take an 16 bit number and let 8 bits represent the fractional portion and 8 bits for
the integer portion, lets call this new type a FIXED_8_8. Now to convert an integer to a FIXED_8_8
we simply multiply the integer by 28 or 256, and to convert the FIXED_8_8 to a integer we divide by
256. We can speed up these operations by taking advantage of the fact that a multiplication by 2x is
the same as a binary shift to the left by x, and division by 2x is the same as a binary shift to the right
by x. To convert a floating point number to a FIXED_8_8 we perform the same operations only using
a floating point constant so that the compiler does not truncate the fractional portion of our number in
an effort to be more efficient. When converting from a float to an integer the least significant bit is
always rounded down, we can offset this by adding 0.5 to the floating point number before assigning it
to our FIXED_8_8 in order to force the number to round up or down as appropriate.

Page 12 of 16

Affine mode graphics on the Nintendo Virtual boy: Fixed Point Math

#define FLOAT_TO_FIXED_8_8 (n) (FIXED_8_8)((n)*256.0f+0.5f)
#define FIXED_8_8 _TO_FLOAT(n) (float) ((n)/256.0f)
#define INT_TO_FIXED_8_8(n) (FIXED_8_8)((n)<<8) // n*256
#define FIXED_8_8 _TO_INT(n) (int) ((n)>>8) // n/256

Addition and subtraction between two fixed point numbers operate the same as with integers.
Multiplication and devision on the other hand bring about some small challenges that must be dealt
with. Given two numbers A and B that we converted to fixed pint by multiplying with a scale factor S,
multiplying the two numbers together results in the following equation: A⋅S  ˙B⋅S =A⋅B⋅S 2 As
you can see the result is scaled by S 2 not S as we had intended. This can easily be corrected by either
dividing A and B by the S before the multiplication step or by dividing the result by S after the
multiplication. In the first case we loose half of our bits in the floating point portion of our number and
in the later case we loose resolution in the real portion of the number. Notice that if you set S to be 1/2
of the bits available in your integer storage type that you potentially could loose all of the real portion
of your number with a multiplication. There are many tricks that can work around this, most involve
performing two multiplications one with the whole number and one with the fractional portion.
However we could just as simply use a integer storage type that has more bits than we are looking for.
For example if your final fixed point number is a FIXED_8_8 we can perform all of our math
operations by using a FIXED_16_16, or a 32 bit number and convert the result back to a FIXED_8_8,
or a 16 bit number, after all of our multiplications have been performed. Division is the opposite, when
we are done dividing A by B we end up canceling out the S factor all together, and thus removing the
fractional component. So in order to combat this we scale A by S before the division.

//This fails because we loose the integer portion of our number
#define FIXED_8_8_MUL_1(a,b) (((a)*(b))>>8)
#define FIXED_8_8_DIV_1(a,b) (((a)<<8)/(b))
//alternative, sacrifice accuracy for extra bits
//this gives us 6:5 bits of resolution without truncation.
#define FIXED_8_8_MUL_2(a,b) (((((a)>>3)*((b)>>3))>>2)
#define FIXED_8_8_DIV_2(a,b) (((((a)<<3)/((b)>>3))>>2)
//If we convert to a larger data type we preserve the lost bits
#define FIXED_8_8_MUL_3(a,b) (FIXED_8_8)(((long)(a)*(long)(b))>>8)
#define FIXED_8_8_DIV_3(a,b) (FIXED_8_8)(((long)(a)<<8)/(long)(b))

Look into this:

Scaling and Rotation
Here are some simple examples of how you might combine the P and Dx variables from before
into a general P vb equation on the Virtual boy.

Page 13 of 16

Affine mode graphics on the Nintendo Virtual boy: Scaling and Rotation

scale

pa = scale x

pb = 0
pc = 0
pd = scale y

rotation

pa = cos
pb = −sin 
pc = sin 
pd = cos

scale and rotation

pa = cos⋅scale x

pb = −sin ⋅scale x

pc = sin ⋅scale y

pd = cos⋅scale y

where P vb = [pa y⋅pbbg x− pa⋅dspx pb⋅dsp y
pc y⋅pdbg y− pc⋅dspx pd⋅dsp y]

If we do not provide the Dx vector, then the scale and rotate functions use the upper left hand of the
BGMap as the center point of the image. You should verify this for yourself by using an empty Dx
vector in order to see what is going on.

In order to set things up we must first load up our Char and BGMap tables and define an affine mode
world entry.

Page 14 of 16

Affine mode graphics on the Nintendo Virtual boy: Scaling and Rotation

//memory base of the param table!
u16* const param = (u16*)0x0003C000;
void initialize() {

//initiate world as affine mode
WA[31].head = WRLD_ON | WRLD_AFFINE | WRLD_OVR;
WA[31].gx = 0;
WA[31].gy = 0;
WA[31].gz = 0;
WA[31].w = screenW;
WA[31].h = screenH;
WA[31].param = (u32)param;
WA[31].over = 0x90;
WA[30].head = WRLD_END;
//move image to char table and bgmap
copymem((BYTE*)CharSeg0, mario_char, mario_char_len);
copymem((BYTE*)BGMap(0), mario_map, mario_map_len);

}

Next we iterate through the lines on the display, filling in the affine table as needed.
void affine_set_all(u8 world, PDx_ST * pdx) {

s16 i, max;
AFFINE_ST *affine;
affine = (AFFINE_ST*)((WA[world].param<<1)+0x00020000);
max = WA[world].h;
for (i = 0; i < max; i++) {

affine[i].pb_y = FTOFIX13_3(i*pdx->pb+pdx->dx);
affine[i].paralax = pdx->paralax;
affine[i].pd_y = FTOFIX13_3(i*pdx->pd+pdx->dy);
affine[i].pa = FTOFIX7_9(pdx->pa);
affine[i].pc = FTOFIX7_9(pdx->pc);

}
}
void affine_rotscl(u8 world,s16 alpha, float zoom,

 s16 bg_x, s16 bg_y, s16 fg_x, s16 fg_y) {
PDx_ST pdx;
pdx.pb = 0.0f;
pdx.pa = COSF(alpha)*(1.0f/zoom);
pdx.pb -= SINF(alpha)*(1.0f/zoom);
pdx.pc = SINF(alpha)*(1.0f/zoom);
pdx.pd = pdx.pa;
pdx.dx = bg_x-(pdx.pa*fg_x + pdx.pb*fg_y);
pdx.dy = bg_y-(pdx.pc*fg_x + pdx.pd*fg_y);
pdx.paralax = 0;
affine_set_all(world,&pdx);

}

If you place the above code in a loop you can change the affine parameters on every screen refresh, thus
creating some simple animations.

Page 15 of 16

Affine mode graphics on the Nintendo Virtual boy: Scaling and Rotation

while (1) {
//Zoom by a multiplicative constant so
// closer objects move faster....
zoom *= sclstep;
if((zoom>maxscale)||(zoom<minscale)) {

//reverse direction of scale
sclstep = 1.0f/sclstep;

}
//increment (rotation)
if(alpha++ > maxalpha) alpha = 0;
affine_rotscl(31,alpha,zoom,

 imageW_Center, imageH_Center,
 screenW_Center, screenH_Center);

//delay 1/50th of a second
vbWaitFrame(1);

}

Conclusion
This concludes our introduction to Affine mode transforms on the Virtual boy. At this point you should
have no trouble implementing simple scaling and rotation effects. In the next document we will discuss
how to combine the affine mode transforms with some simple 3D projections to generate pseudo 3D
environments.

References
• TONC GBA Affine Mode Documentation, http://user.chem.tue.nl/jakvijn/tonc/

• 2D Transformations - Introduction to Computer Graphics,

Arizona State University, Dianne Hansford, February 2, 2005

• Fixed Point Math Tutorial

• 3D Graphics Math Book

Page 16 of 16

