IAR Assembler

Reference Guide

for Renesas
V850 Microcontroller Family

AV850-4

©IAR

SYSTEMS

COPYRIGHT NOTICE
Copyright © 1998-2010 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, [AR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Electronics Corporation. V850 is a
trademark of Renesas Electronics Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Fourth edition: October 2010

Part number: AV850-4

This guide applies to version 3.80 of IAR Embedded Workbench® for V850.
Internal reference: R11, AFEIL, IJOA.

Contents

TADIES ..ot 7
PEEIACE ..o e e 9
Who should read this guideooooooiiie 9
How to use this guide ... 9
What this guide contains ..., 9
Other documentation ... 10
Document conventionscocooiieiicieeeeeeee e 10
Typographic CONVENTIONScocuevierieriieniienieeieesieere et 11
Naming CONVENTIONSceveeueruirureieieieienierteniesiereesiesteeseesesseeseeeeneenees 11
Introduction to the IAR Assembler for V850 ..o, 13
Introduction to assembler programming ..., 13
GEtting StATTEAevveveieriieiiiie ettt ettt 13
Modular programming ...
External interface details
Assembler iNVOCAtION SYNEAX ..cc.eevverveerierieriierieenieeieeieeresreseeenieennes 15
PasSing OPLIONSccuevvererieririninireetecetetete ettt s 15
Environment variablesccoccevcverieieeiiiecieeieeeeeee e 16
Error 1etUrn COAESoiiiiiiiiiiiiieiieecieeeie ettt evee e 16
SoUKrCE FOrMAL ...

Assembler instructions

SYNtax deVIAtIONSc.eevvieierieeieriiiieerieeieeee ettt
Expressions, operands, and operatorsccccccovncecnnan. 18

INTEZET CONSTANES ...cvvenviveieiiieeieeieeiceicei ettt 18

ASCII character CONSLANLScccoeviiiiiiiiiiiiiiicicece s 19

Floating-point constants

TRUE and FALSEccooiiinieieneeeentreeteneeseietse e iestsesseneienens

SYMDOIS ettt sttt 20
LabeIS .o 21
Register SYMDBOISccueoveeiieininirieeeccec e 21

Predefined SYMDOLSccoeveeieiriiieieieieieeee e 21

Absolute and relocatable expressions

EXPression reStriCtioNSoc.eecvereerierieenieeneenieessenteseesieesieesseesseenees
List file format ... e 25
HEAET ..t 25
BOAY e
SUMMATY .ttt ettt ettt sae st sresresre e

Symbol and cross-reference table

Programming hints ...
Accessing special function regisStersccceevevererienienienienenieeeeeene 26
Using C-style preprocessor dir€Ctivesoeeveverenieneneneneneneenees 26
AsSemMbIer OPLIONS ... 27
Setting command line assembler options 27
Extended command line file
Summary of assembler options ... 28
Description of assembler options ..., 29
Assembler OPErators ... 41
Precedence of operators ... 41
Summary of assembler operators ... 41
Unary operators — 1
Multiplicative arithmetic Operators — 2coceeererenereneneneeeeneas 42
Additive arithmetic Operators — 3ccccoceveevievienenenienieneneneeeeeene 42
Shift OPErators — 4c.coveierieririerererer ettt 42
AND OPETAtOrS — 5 ittt et
OR OPEIALOTS — 6 ..cveniiiiieiiiieieeececetete ettt st
Comparison operators — 7 ...
Description of Operators ...
Assembler direCtiVes ... 55
Summary of assembler directives ... 55
Module control directives ..o, 59

IAR Assembler
Reference Guide for V850

Contents °

Parameters ...

Descriptions

EXAMPIES .ooeeiniiiiiiiiieiee s 81

Descriptions

EXAMPIES ..oneeiniiiiiiiiieete e

Data definition or allocation directivescccccoevvrennn. 94
SYNLAX ettt ettt ettt ettt ettt sbe bbb sbesbesaeeae 94
Parameterscocoeceeieieiiiiiiiiien e 94
DESCTIPHONS ...vevviurinieiiniinieniiritett ettt ettt ettt sbe et 94
Examples

Assembler control directivescccocoooiiiniii 96
SYNTAX vttt sttt ettt ettt ettt et ne st esresresre e 96
Parameterscocceeeveeieieieicicererese s 96
DESCIIPLONS ..vevieiiiiieiienteeieete ettt ettt ettt sttt nbeeeeenees 96
EXAMPIES ...oviiiiiiiiiriincc ettt

Function directives

SYNEAX ettt ettt ettt ettt e e st sttt esaeenaeens

Parameterscccooiiiiiiiiiiiii e

DESCIIPLONS .evenienieiiienienienieeteei ettt 99
Call frame information directives ..o, 99

SIMPLE TULES ..ceveiiiiiiriiriercctctee e 106
CFL @XPIeSSIONS ...uveuveeiieieriinienieeiieitentetesteeestestesbesbesbesbeebesneeseeneenes 108
EXAMPIE ..ooiiiiiiiiie e e 111
Assembler diagnoStiCs ... 115
Message format
Severity levels ...
Options for diagNOSLICSeceeiririerieieienieseresteeieee ettt 115
Assembly Warning mMeSSAZEScccververeereeneeriernieeirenieseeseeneeneens 115
Command line eIror MESSAZESceeereereereerveruenrenrenrenenieeeeireeeneene 115

IAR Assembler
Reference Guide for V850

Assembly error messages

Assembly fatal eITOr MESSAZESc.evveuveuerveirrenieirieeereieenreeereneenes 116
Assembler internal e1ror MESSAZESeveververrerereriereneneereeeeeens 116
... 117

Tables

1: Typographic conventions used in this gUIAEc..cccevervieieieieneneniencnencnenee 11
2: Naming conventions used in this gUIAEcccceevieiiriieiienienenierereresesesesenene 11
3: Assembler environment vVariablescc.ccoeveriniinininininnee e 16
4: Assembler error return COUEScoeriririririnieieieieientesteste sttt neeas 16
5: Integer constant formats

6: ASCII character constant fOrmatscocceceeeeerverienienininieieiererenesesesieeeeneene 19
7: Floating-pOint CONSLANLSc..eeeeteierieriirierienienteetteteeetentestestessesresieebeeseeaeeeneeneens 20
8: Predefined re@iSter SYMDOLScceveririiriiieieieieieseees ettt 21
9: Predefined SYMDOISccoouiriiriinininiriicieeeecee ettt 22
10: Symbol and cross-reference tablecccccoeverereninininieeeeeeereseneneae 25
11: Assembler Options SUMMALYcc.cceeuerrererrererenrereruenserenseenresseressesesesseesseneenens 28
12: Conditional LISt (=€) .veeeviieiiiieiiieiiieeieeeiee et e et e ereeereeeereeesaeeesreesbeeesreeesssaennnes

13: Parameter list (--fpu)

14: Controlling case sensitivity in user Symbols (-S)ccocecerervrenreerinreeneneeennene 36
15: Specitying the processor configuration (-V)c.ccceeevereveeiereeienrenrenenienienenne 37
16: Disabling assembler Warnings (=W)ccceouevuerererenenineeeeeeeeieeeeesresresienienne 38
17: Including cross-references in assembler list file (-X) ...oocevereerierienienienienenenene 39
18: Assembler direCtives SUMMATYccccereereerieerieerieeieeteseeseeseeeseesseenseensesssennne 55
19: Module control dir€CIVES ...c..coevverierierieriiriinieieeieeieetetetetesretes s saeene 59
20: Symbol control dir€CHIVESc..ccevereeuerieuirieieiinieenreeeitteesree et saenes 62
21: Segment CONLIOl dIFECLIVESc.evvviriirieriieniieieeieenteet ettt s e st e e ee e eanes 65
22: Value assignment directives ... 70
23: Operand MOCITIETSccceveiruirieuiriiiitiieertet ettt ettt 71
24: Conditional assembly dir€CVESccevvierieriirriieiierierteniereene et 75
25: Macro processing dir€CIVEScoereriereruerirteietentenrenteereeeeeereeeeereenesressenaenee 77
26: Listing CONtrol dir€CLIVESceoueueruirieuirieirieieieieerece ettt 85
27: C-style preprocessor QIirECHIVEScovviriererrieerierieetenteniesieesieeseeeieeeeeresasesanes 89
28: Data definition or allocation dir€CtiVesccccoveveeererrieienienieneneneneneeeeeene 94
29: Assembler CONtrol ir€CtiVESceeeeuieieierierieieresesie sttt ettt 96
30: Call frame information directives 99
31: Unary operators in CFL @XPIresSionsc..cececeeouerveneneneneneeneenieneenrenrenenennes 109

IAR Assembler
Reference Guide for V850

32: Binary operators in CFI expressions

33: Ternary operators in CFI expressions

34: Code sample with backtrace rows and cOlumNScccccceevverveneeereneeceennenenne

Preface

Welcome to the IAR Assembler Reference Guide for V850. The purpose of
this guide is to provide you with detailed reference information that can help
you to use the IAR Assembler for V850 to develop your application according
to your requirements.

Who should read this guide

You should read this guide if you plan to develop an application, or part of an
application, using assembler language for the V850 microcontroller and need to get
detailed reference information on how to use the IAR Assembler for V850. In addition,
you should have working knowledge of the following:

o The architecture and instruction set of the V850 microcontroller. Refer to the
documentation from Renesas for information about the V850 microcontroller

o General assembler language programming

e Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you first begin using the IAR Assembler for V850, you should read the chapter
Introduction to the IAR Assembler for V850 in this reference guide.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR Systems toolkit, we recommend that you first read the
initial chapters of the IDE Project Management and Building Guide.

What this guide contains

Below is a brief outline and summary of the chapters in this guide.
o [ntroduction to the IAR Assembler for V850 provides programming information. It
also describes the source code format, and the format of assembler listings.

o Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical

Other documentation

10

summary of the assembler options, and contains detailed reference information
about each option.

Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.
Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

Assembler diagnostics contains information about the formats and severity levels of
diagnostic messages.

Other documentation

The complete set of IAR Systems development tools for the V850 microcontroller is
described in a series of guides and online help files. For information about:

Using the AR Embedded Workbench® IDE, refer to the IDE Project Management
and Building Guide

o Using the IAR C-SPY® Debugger, refer to the C-SPY® Debugging Guide for V850
o Programming for the IAR C/C++ Compiler for V850, refer to the JAR C/C++

Compiler Reference Guide for V850

Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the /AR Linker and Library Tools Reference Guide

o Using the IAR DLIB Library, refer to the online help system

e Porting application code and projects created with a previous IAR Embedded

Workbench IDE for V850, refer to the /AR Embedded Workbench® Migration
Guide for V850.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.

Document conventions

IAR Assembler
Reference Guide for V850

When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example v850\doc, the
full path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench 6.n\v850\doc.

Preface __4

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a command.

alb|c Alternatives in a command.

{a | b | c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic * A cross-reference within this guide or to another guide.

* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Brand name

Generic term

IAR Embedded Workbench® for V850 IAR Embedded Workbench®
IAR Embedded Workbench® IDE for V850 the IDE
IAR C-SPY® Debugger for V850 C-SPY, the debugger

IAR C-SPY® Simulator

the simulator

IAR C/C++ Compiler™ for V850 the compiler

Table 2: Naming conventions used in this guide

Document conventions

12

IAR Assembler
Reference Guide for V850

Brand name

Generic term

IAR Assembler™ for V850
IAR XLINK™ Linker

IAR XAR Library builder™
IAR XLIB Librarian™

IAR DLIB Library™

the assembler
XLINK, the linker
the library builder
the librarian

the DLIB library

Table 2: Naming conventions used in this guide (Continued)

Introduction to the IAR
Assembler for V850

This chapter contains these sections:

Introduction to assembler programming
Modular programming

External interface details

Source format

Assembler instructions

Expressions, operands, and operators
List file format

Programming hints.

Introduction to assembler programming

Even if you do not intend to write a complete application in assembler language, there
might be situations where you find it necessary to write parts of the code in assembler,
for example, when using mechanisms in the V850 microcontroller that require precise

timing and special instruction sequences.

To write efficient assembler applications, you should be familiar with the architecture

and instruction set of the V850 microcontroller. Refer to Renesas’ hardware
documentation for syntax descriptions of the instruction mnemonics.

GETTING STARTED

To ease the start of the development of your assembler application, you can:

o Work through the tutorials—especially the one about mixing C and assembler

o Read about the assembler language interface—also useful when mixing C and
assembler modules—in the /AR C/C++ Compiler Reference Guide for V850

modules—that you find in the IAR Information Center

Modular programming

14

o In the IAR Embedded Workbench IDE, you can base a new project on a template
for an assembler project.

Modular programming

IAR Assembler
Reference Guide for V850

Itis widely accepted that modular programming is a prominent feature of good software
design. If you structure your code in small modules—in contrast to one single
monolith—you can organize your application code in a logical structure, which makes
the code easier to understand, and which aids:

e efficient program development
o reuse of modules

® maintenance.

The IAR development tools provide different facilities for achieving a modular structure
in your software.

Typically, you write your assembler code in assembler source files. In each source file
you define one or several assembler modules, using the module control directives. Each
module has a name and a type, where the type can be either PROGRAM or LIBRARY. The
linker always includes a PROGRAM module, whereas a LIBRARY module is only included
in the linked code if other modules refer to a public symbol in the module. You can
divide each module further into subroutines.

A segment is a logical entity containing a piece of data or code that should be mapped
to a physical location in memory. Use the segment control directives to place your code
and data in segments. A segment can be either absolute or relocatable. An absolute
segment always has a fixed address in memory, whereas the address for a relocatable
segment is resolved at link time. Segments let you control how your code and data is
placed in memory. Each segment consists of many segment parts. A segment part is the
smallest linkable unit, which allows the linker to include only those units that are
referred to.

If you are working on a large project you will soon accumulate a collection of useful
routines that are used by several of your applications. To avoid ending up with a huge
amount of small object files, collect modules that contain such routines in a library
object file. In the IAR Embedded Workbench IDE, you can set up a library project, to
collect many object files in one library. For an example, see the tutorials in the IAR
Information Center.

To summarize, your software design benefits from modular programming, and to
achieve a modular structure you can:

o Create many small modules, either one per source file, or many modules per file by
using the module directives

Introduction to the IAR Assembler for V850 __ o

e In each module, divide your assembler source code into small subroutines
(corresponding to functions on the C level)

e Divide your assembler source code into segments, to gain more precise control of
how your code and data finally is placed in memory

e Collect your routines in libraries, which means that you can reduce the number of
object files and make the modules conditionally linked.

External interface details

This section provides information about how the assembler interacts with its
environment.

You can use the assembler either from the IAR Embedded Workbench IDE or from the
command line. Refer to the IDE Project Management and Building Guide for
information about using the assembler from the IAR Embedded Workbench IDE.

ASSEMBLER INVOCATION SYNTAX
The invocation syntax for the assembler is:
av850 [options] [sourcefile] [options]

For example, when assembling the source file prog. s85, use this command to generate
an object file with debug information:

av850 prog -r

By default, the IAR Assembler for V850 recognizes the filename extensions s85, asm,
and msa for source files. The default filename extension for assembler output is r85.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. However, there is one exception: when you use

the - option, the directories are searched in the same order that they are specified on the
command line.

If you run the assembler from the command line without any arguments, the assembler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

PASSING OPTIONS

You can pass options to the assembler in three different ways:

o Directly from the command line

Specify the options on the command line after the av850 command; see Assembler
invocation syntax, page 15.

External interface details

16

IAR Assembler
Reference Guide for V850

o Via environment variables

The assembler automatically appends the value of the environment variables to every
command line; see Environment variables, page 16.

e Viaa text file by using the - £ option; see -f, page 31.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the Assembler options chapter.
ENVIRONMENT VARIABLES

Assembler options can also be specified in the ASMvV850 environment variable. The
assembler automatically appends the value of this variable to every command line, so it
provides a convenient method of specifying options that are required for every assembly.

You can use these environment variables with the IAR Assembler for V850:

Environment variable Description

ASMV850 Specifies command line options; for example:
set ASMV850=-L -ws

ASMV850_INC Specifies directories to search for include files; for example:
set ASMV850_INC=c:\myinc\

Table 3: Assembler environment variables

For example, setting this environment variable always generates a list file with the name
temp.lst:

set ASMV850=-1 temp.lst

For information about the environment variables used by the IAR XLINK Linker and
the IAR XLIB Librarian, see the /AR Linker and Library Tools Reference Guide.
ERROR RETURN CODES

When using the IAR Assembler for V850 from within a batch file, you might have to
determine whether the assembly was successful to decide what step to take next. For this
reason, the assembler returns these error return codes:

Return code Description

0 Assembly successful, warnings might appear.

1 Warnings occurred (only if the —ws option is used).
2 Errors occurred.

Table 4: Assembler error return codes

Introduction to the IAR Assembler for V850 __ o

Source format

The format of an assembler source line is as follows:
[label [:]] [operation] [operands] [; comment]

where the components are as follows:

label A definition of a label, which is a symbol that represents an
address. If the label starts in the first column—that is, at the far
left on the line—the : (colon) is optional.

operation An assembler instruction or directive. This must not start in the
first column—there must be some whitespace to the left of it.

operands An assembler instruction or directive can have zero, one, two,
three, or four operands. The operands are separated by commas.
An operand can be:
* a constant representing a numeric value or an address
* a symbolic name representing a numeric value or an address
(where the latter also is referred to as a label)
« a floating-point constant
* a register
* a predefined symbol
* the program location counter (PLC)
* an expression.

comment Comment, preceded by a ; (semicolon)
C or C++ comments are also allowed.

The components are separated by spaces or tabs.

A source line can not exceed 2047 characters.

Tab characters, ASCII 094, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc. This affects the source code output in list files and debug
information. Because tabs might be set up differently in different editors, do not use tabs
in your source files.

Assembler instructions

The IAR Assembler for V850 supports the syntax for assembler instructions as
described in the chip manufacturer’s hardware documentation. It complies with the
requirement of the V850 architecture on word alignment. Any instructions in a code
segment placed on an odd address results in an error.

Note: See also Operand modifiers, page 71.

Expressions, operands, and operators

SYNTAX DEVIATIONS

Instructions with a condition code as operand

Assembler instructions with a condition code as operand, for example SETF, have this
format in the Renesas documentation:

SETF cccece, reg

In the IAR assembler, the condition code is merged with the mnemonic:
SETFNZ reg

instead of

SETF NZ,reg

PREPARE/DISPOSE

The IAR Assembler for V850 syntax for the PREPARE/DISPOSE instruction does not
follow the syntax described in the Renesas documentation for the imm5 parameter. In
the Renesas description, imm5 has the range 0-31, directly encoded into opcode. For the
IAR assembler, imm5 has the range 0-124 encoded into opcode after division by 4.

Expressions, operands, and operators
Expressions consist of expression operands and operators.

The assembler accepts a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers. Range checking
is performed if a value is used for generating code.

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Assembler operators, page 41.

These operands are valid in an expression:

o Constants for data or addresses, excluding floating-point constants.

o Symbols—symbolic names—which can represent either data or addresses, where
the latter also is referred to as labels.

o The program location counter (PLC), $ (dollar).

The operands are described in greater detail on the following pages.

INTEGER CONSTANTS

Because all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

IAR Assembler
18 Reference Guide for V850

Introduction to the IAR Assembler for V850 __4

Constants are written as a sequence of digits with an optional - (minus) sign in front to
indicate a negative number.

Commas and decimal points are not permitted.

These types of number representation are supported:

Integer type Example

Binary 1010b,b'1010

Octal 1234q,qg'1234

Decimal 1234,-1,d'1234
Hexadecimal OFFFFh, OXFFFF, h'FFFF

Table 5: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

ASCIl CHARACTER CONSTANTS

ASCII constants can consist of any number of characters enclosed in single or double
quotes. Only printable characters and spaces can be used in ASCII strings. If the quote
character itself will be accessed, two consecutive quotes must be used:

Format Value

'ABCD' ABCD (four characters).

"ABCD" ABCD'\O0"' (five characters the last ASCII null).
'A''B! A'B

N I%

"' (4 quotes) '

"' (2 quotes) Empty string (no value).

" " (2 double quotes) Empty string (an ASCII null character).

\! ', for quote within a string, asin 'I\'d love to'
\\ \, for \ within a string
\" ", for double quote within a string

Table 6: ASCII character constant formats

FLOATING-POINT CONSTANTS

The IAR Assembler for V850 will accept floating-point values as constants and convert
them into IEEE single-precision (signed 64-bit) floating-point format or fractional
format.

Expressions, operands, and operators

20

IAR Assembler
Reference Guide for V850

Floating-point numbers can be written in the format:
[+ | -1[digits].[digits] [{E | e} [+ \ -]ldigits]

This table shows some valid examples:

Format Value

10.23 1.023 x 10’
1.23456E-24 1.23456 x 1024
I.0E3 1.0x 103

Table 7: Floating-point constants
Spaces and tabs are not allowed in floating-point constants.

Note: Floating-point constants will not give meaningful results when used in
expressions.

TRUE AND FALSE

In expressions a zero value is considered FALSE, and a non-zero value is considered
TRUE.

Conditional expressions return the value O for FALSE and 1 for TRUE.

SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant. Depending on what kind of operation a symbol is followed by, the symbol
is either a data symbol or an address symbol where the latter is referred to as a label. A
symbol before an instruction is a label and a symbol before, for example the EQU
directive, is a data symbol. A symbol can be:

e absolute—its value is known by the assembler

o relocatable—its value is resolved at link time.

Symbols must begin with a letter, a—z or A—Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

Case is insignificant for built-in symbols like instructions, registers, operators, and
directives. For user-defined symbols, case is by default significant but can be turned on
and off using the Case sensitive user symbols (-s) assembler option. See -s, page 36
for additional information.

Use the symbol control directives to control how symbols are shared between modules.
For example, use the PUBLIC directive to make one or more symbols available to other
modules. The EXTERN directive is used for importing an untyped external symbol.

Introduction to the IAR Assembler for V850 __4

Note that symbols and labels are byte addresses. For additional information, see
Generating a lookup table, page 95.
LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)

The assembler keeps track of the start address of the current instruction. This is called
the program location counter.

If you must refer to the program location counter in your assembler source code, use the
$ (dollar) sign. For example:

BR S ; Loop forever
REGISTER SYMBOLS
This table shows the existing predefined register symbols:
Name Description
ECT Floating-point control register*
EFG Floating-point flag register*
EP Element pointer, alias for R30
GP Alias for R4
HP Alias for R2
LP Link pointer, alias for R31
PC Program counter
RO-R31 General purpose registers
SP Stack pointer, alias for R3
TP Alias for R5
ZERO Zero register, alias for RO
VRO-VR31 Vector registers used by SIMD instructions.

This applies only to V850E2M.

Table 8: Predefined register symbols

* Only available for processors with a floating-point unit.

PREDEFINED SYMBOLS

The IAR Assembler for V850 defines a set of symbols for use in assembler source files.
The symbols provide information about the current assembly, allowing you to test them

21

Expressions, operands, and operators

22

IAR Assembler
Reference Guide for V850

in preprocessor directives or include them in the assembled code. The strings returned
by the assembler are enclosed in double quotes.

These predefined symbols are available:

Symbol

Value

__AV850__

__BUILD_NUMBER_ _

__DATE_ _

__FILE__

__TIAR_SYSTEMS_ASM__

__LINE__

TID

__SUBVERSION_ _

__TIME__

VER,

An integer that is set to 1 when the code is assembled with
the IAR Assembler for V850.

A unique integer that identifies the build number of the
assembler currently in use. The build number does not
necessarily increase with an assembler that is released later.
The current date in dd/Mmm/yyyy format (string).

The name of the current source file (string).

IAR assembler identifier (number). Note that the number
could be higher in a future version of the product. This
symbol can be tested with #1ifdef to detect whether the
code was assembled by an assembler from IAR Systems.
The current source line number (number).

Target identity, consisting of two bytes (number). The low
byte is the target identity, which is 0x55 for av850. The
high byte is the processor option *16.

These values are therefore possible:

-vO0 0x0055

-vl 0x1055

An integer that identifies the version letter of the version
number, for example the C in 4.21C, as an ASCII character.

The current time in hh :mm: ss format (string).

The version number in integer format; for example, version
4.17 is returned as 417 (number).

Table 9: Predefined symbols

Note: The symbol __T1D__ is related to the predefined symbol __TID__ in the IAR
C/C++ Compiler for V850. It is described in the I[AR C/C++ Compiler Reference Guide
for V850. There you can also find detailed information about the processor variants and

the -v processor option.

Including symbol values in code

Several data definition directives make it possible to include a symbol value in the code.
These directives define values or reserve memory. To include a symbol value in the code,
use the symbol in the appropriate data definition directive.

Introduction to the IAR Assembler for V850 __ o

For example, to include the time of assembly as a string for the program to display:

timdat db __TIME__,",",__DATE_ ,0 ; time and date
movea timdat,R0O,R6 ; Load address of string
jarl printstring,R10 ; routine to print string

Testing symbols for conditional assembly

To test a symbol at assembly time, use one of the conditional assembly directives. These
directives let you control the assembly process at assembly time.

For example, if you want to assemble separate code sections depending on whether you
are using an old assembler version or a new assembler version, do as follows:

#1if (__VER__ > 300) ; New assembler version
#else ; 0ld assembler version
#endif

See Conditional assembly directives, page 75.

ABSOLUTE AND RELOCATABLE EXPRESSIONS

Depending on what operands an expression consists of, the expression is either absolute
or relocatable. Absolute expressions are those expressions that only contain absolute
symbols or relocatable symbols that cancel each other out.

Expressions that include symbols in relocatable segments cannot be resolved at
assembly time, because they depend on the location of segments. These are referred to
as relocatable expressions.

Such expressions are evaluated and resolved at link time, by the IAR XLINK Linker.
There are no restrictions on the expression; any operator can be used on symbols from
any segment, or any combination of segments.

For example, a program could define the segments DATA and CODE as follows:

module data_mod

rseg DATA
first ds 5
second ds 3
third ds 8

endmod

module code_mod
extern first

23

Expressions, operands, and operators

24

IAR Assembler
Reference Guide for V850

extern second
extern third

rseg CODE

mov first+7, R10

mov first-7, R10

mov 7+first, R10

mov (first/second) *third, R10
end

Note: At assembly time, there is no range check. The range check occurs at link time
and, if the values are too large, there is a linker error.

EXPRESSION RESTRICTIONS

Expressions can be categorized according to restrictions that apply to some of the
assembler directives. One such example is the expression used in conditional statements
like TF, where the expression must be evaluated at assembly time and therefore cannot
contain any external symbols.

The following expression restrictions are referred to in the description of each directive
they apply to.

No forward

All symbols referred to in the expression must be known, no forward references are
allowed.

No external

No external references in the expression are allowed.

Absolute

The expression must evaluate to an absolute value; a relocatable value (segment offset)
is not allowed.

Fixed

The expression must be fixed, which means that it must not depend on variable-sized
instructions. A variable-sized instruction is an instruction that might vary in size
depending on the numeric value of its operand.

Introduction to the IAR Assembler for V850 __4

List file format

The format of an assembler list file is as follows:

HEADER

The header section contains product version information, the date and time when the file
was created, and which options were used.

BODY

The body of the listing contains the following fields of information:

o The line number in the source file. Lines generated by macros, if listed, have a .
(period) in the source line number field.

o The address field shows the location in memory, which can be absolute or relative
depending on the type of segment. The notation is hexadecimal.

o The data field shows the data generated by the source line. The notation is
hexadecimal. Unresolved values are represented by (periods), where two periods
signify one byte. These unresolved values are resolved during the linking process.

o The assembler source line.

SUMMARY

The end of the file contains a summary of errors and warnings that were generated.

SYMBOL AND CROSS-REFERENCE TABLE

When you specify the Include cross-reference option, or if the LSTXRF + directive was
included in the source file, a symbol and cross-reference table is produced.

This information is provided for each symbol in the table:

Information Description

Symbol The symbol’s user-defined name.

Mode ABS (Absolute), or REL (Relocatable).

Segments The name of the segment that this symbol is defined relative to.
Value/Offset The value (address) of the symbol within the current module, relative to

the beginning of the current segment part.

Table 10: Symbol and cross-reference table

25

Programming hints

26

Programming hints

IAR Assembler
Reference Guide for V850

This section gives hints on how to write efficient code for the IAR Assembler for V850.
For information about projects including both assembler and C or C++ source files, see
the AR C/C++ Compiler Reference Guide for V850.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several V850 devices are included in the IAR Systems product
package, in the \v850\inc directory. These header files define the processor-specific
special function registers (SFRs) and interrupt vectors.

The header files are intended to be used also with the IAR C/C++ Compiler for V850,
and therefore they are made with macros. The macros that convert the declaration to
assembler or compiler syntax are defined in the io_macros.h file.

The header files can also be used as templates, when creating new header files for other
V850 devices.

Example

If any assembler-specific additions are needed in the header file, you can easily add
these in the assembler-specific part of the file:

#ifdef _ TAR_SYSTEMS_ASM_
; Add your assembler-specific defines here.
#endif

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments. For more information about comments, see Assembler
control directives, page 96.

Assembler options

This chapter first explains how to set the options from the command line, and
gives an alphabetical summary of the assembler options. It then provides
detailed reference information for each assembler option.

The IDE Project Management and Building Guide describes how to set assembler
options in the IAR Embedded Workbench® IDE, and gives reference
information about the available options.

Setting command line assembler options

To set assembler options from the command line, include them on the command line,
after the av850 command:

av850 [options] [sourcefile] [options]
These items must be separated by one or more spaces or tab characters.

If all the optional parameters are omitted, the assembler displays a list of available
options a screenful at a time. Press Enter to display the next screenful.

For example, when assembling the source file power2 . s85, use this command to
generate a list file to the default filename (power2.1st):

av850 power2 -L

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a list file with the name 1ist.1lst:

av850 power2 -1 list.lst

Some other options accept a string that is not a filename. This is included after the option
letter, but without a space. For example, to generate a list file to the default filename but
in the subdirectory named 1ist:

av850 power2 -Llist)\

Note: The subdirectory you specify must already exist. The trailing backslash is
required to separate the name of the subdirectory and the default filename.
EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

27

Summary of assembler options

By default, extended command line files have the extension xc1, and can be specified
using the - £ command line option. For example, to read the command line options from
extend.xcl, enter:

av850 -f extend.xcl

Summary of assembler options

This table summarizes the assembler options available from the command line:

Command line option Description

-B Macro execution information

-c Conditional list

-D Defines preprocessor symbols

-E Maximum number of errors

-f Extends the command line

--fpu Enables floating-point unit instructions
-G Opens standard input as source

-I Add search path for header file

-1 Lists #included text

-L Generates list file to path

-1 Generates list file

-M Macro quote characters

-N Omit header from assembler listing
-n Enables support for multibyte characters
-0 Sets object filename to path

-0 Sets object filename

-p Sets the number of lines per page
-r Generates debug information

-S Sets silent operation

-s Case sensitive user symbols

-t Tab spacing

-U Undefines a symbol

-v Specifies the processor core

-w Disables warnings

Table 11: Assembler options summary

IAR Assembler
28 Reference Guide for V850

Assembler options __¢

Command line option Description

-x Includes cross-references

Table 11: Assembler options summary (Continued)

Description of assembler options
The following sections give detailed reference information about each assembler option.
& Note that if you use the page Extra Options to specify specific command line options,

there is no check for consistency problems like conflicting options, duplication of
options, or use of irrelevant options.

-B -B

Use this option to make the assembler print macro execution information to the standard
output stream on every call of a macro. The information consists of:

The name of the macro

°

o The definition of the macro
o The arguments to the macro
°

The expanded text of the macro.

This option is mainly used in conjunction with the list file options -L or -1; for
additional information, see page 32.

Project>Options>Assembler >List>Macro execution info

-c¢ -c{DSEAOM}

Use this option to control the contents of the assembler list file. This option is mainly
used in conjunction with the list file options -L and -1; see page 32 for additional
information.

29

Description of assembler options

30

IAR Assembler
Reference Guide for V850

This table shows the available parameters:

Command line option Description

-cDh Disable list file

-cS No structured assembler list
-cE No macro expansions

-cA Assembled lines only

-cO Multiline code

-cM Macro definitions

Table 12: Conditional list (~c)
To set related options, select:

Project>Options>Assembler >List

-Dsymbol[=value]

Defines a symbol to be used by the preprocessor with the name symbol and the value
value. If no value is specified, 1 is used.

The -D option allows you to specify a value or choice on the command line instead of
in the source file.
Example

You might want to arrange your source to produce either the test or production version
of your program dependent on whether the symbol TESTVER was defined. To do this use
include sections such as:

#ifdef TESTVER

.. ; additional code lines for test version only
#endif
Then select the version required on the command line as follows:

Production version: av850 prog
Test version: av850 prog -DTESTVER

Alternatively, your source might use a variable that you must change often. You can then
leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

av850 prog -DFRAMERATE=3

Project>Options>Assembler>Preprocessor>Defined symbols

-E

--fpu

Assembler options __¢

-Enumber
This option specifies the maximum number of errors that the assembler reports.

By default, the maximum number is 100. The -E option allows you to decrease or
increase this number to see more or fewer errors in a single assembly.

Project>Options>Assembler>Diagnostics>Max number of errors

-f filename

Extends the command line with text read from the specified file. Notice that there must
be a space between the option itself and the filename.

The - £ option is particularly useful if there are many options which are more
conveniently placed in a file than on the command line itself.

Example

To run the assembler with further options taken from the file extend.xc1, use:
av850 prog -f extend.xcl

To set this option, use:

Project>Options>Assembler>Extra Options

--fpu {auto|single|double}
Use this option to enable instructions for floating-point units.

This table shows the available parameters:

Parameter Description

auto Uses the best FPU setting for the selected CPU
single Uses the floating-point unit for 32-bit operations
double Uses the floating-point unit for all operations

Table 13: Parameter list (--fpu)
To set this option, use:

Project>Options>General Options>Target>FPU

-G

This option causes the assembler to read the source from the standard input stream,
rather than from a specified source file.

31

Description of assembler options

32

IAR Assembler
Reference Guide for V850

When -G is used, you cannot specify a source filename.

This option is not available in the IAR Embedded Workbench IDE.

-Ipath

Use this option to specify paths to be used by the preprocessor, by adding the #include
file search prefix path.

By default, the assembler searches for #include files only in the current working
directory and in the paths specified in the Av850_INC environment variable. The -I
option allows you to give the assembler the names of directories which it will also search
if it fails to find the file in the current working directory.

Example

For example, using the options:

-Ic:\global\ -Ic:\thisproj\headers\

and then writing:

#include "asmlib.hdr"

in the source, makes the assembler search first in the current directory, then in the
directory c:\global\, and then in the directory C:\thisproj\headers\. Finally,
the assembler searches the directories specified in the Av850_INC environment
variable, provided that this variable is set.

Project>Options>Assembler >Preprocessor>Additional include directories

-1i
Lists #include files in the list file.

By default, the assembler does not list #include file lines since these often come from
standard files and would waste space in the list file. The -i option allows you to list
these file lines.

Project>Options>Assembler >List>#included text

-L[path]

By default the assembler does not generate a list file. Use this option to make the
assembler generate one and sent it to file [path] sourcename.lst.

Assembler options __¢

To simply generate a listing, use the -L option without a path. The listing is sent to the
file with the same name as the source, but the extension is 1st.

The -L option lets you specify a path, for example, to direct the list file to a subdirectory.
Notice that you cannot include a space before the path.

-L cannot be used at the same time as -1.

Example

To send the list file to 1ist\prog. lst rather than the default prog.1st:
av850 prog -Llist\

To set related options, select:

Project>Options>Assembler >List

-1 filename

Use this option to make the assembler generate a listing and send it to the file £i1ename.
If no extension is specified, 1st is used. Notice that you must include a space before the
filename.

By default, the assembler does not generate a list file. The -1 option generates a listing,
and directs it to a specific file. To generate a list file with the default filename, use the
-L option instead.

To set related options, select:

Project>Options>Assembler >List

-Mab

This option sets the characters to be used as left and right quotes of each macro argument
to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

Example

For example, using the option:

-M[]

33

Description of assembler options

34

IAR Assembler
Reference Guide for V850

in the source you would write, for example:
print [>]
to call a macro print with > as the argument.

Note: Depending on your host environment, it might be necessary to use quote marks
with the macro quote characters, for example:

av850 filename -M'<>’

Project>Options>Assembler >Language>Macro quote characters

-N

Use this option to omit the header section that is printed by default in the beginning of
the list file.

This option is useful in conjunction with the list file options -L or -1; see page 32 for
additional information.

Project>Options>Assembler >List>Include header

-n

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C/C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>Assembler >Language>Enable multibyte support

-O[path]

Use this option to set the path to be used on the name of the object file. Notice that you
cannot include a space before the path.

By default, the path is null, so the object filename corresponds to the source filename.
The -0 option lets you specify a path, for example, to direct the object file to a
subdirectory.

Notice that -0 cannot be used at the same time as -o.

Assembler options __¢

Example

To send the object code to the file obj\prog.r85 rather than to the default file
prog.r85:

av850 prog -0obj\

Project>Options>General Options>Output>Output directories>Object files

-o {filename|path}

By default, the object code output produced by the assembler is located in a file with the
same name as the source file, but with the extension o. Use this option to explicitly
specify a different output filename for the object code output.This option sets the
filename to be used for the object file.

The -o option cannot be used at the same time as the -0 option.
For more syntax information, see Setting command line assembler options, page 27.

Project>Options>General Options>Output>Output directories>Object files

-plines

The -p option sets the number of lines per page to 1ines, which must be in the range
10 to 150.

This option is used in conjunction with the list options -L or -1; see page 32 for
additional information.

Project>Options>Assembler>List>Lines/page

-r

The --debug option makes the assembler generate debug information that allows a
symbolic debugger such as the IAR C-SPY Debugger to be used on the program.

to reduce the size and link time of the object file, the assembler does not generate debug
information by default.

Project>Options>Assembler >Output>Generate debug information

-S

The -s option causes the assembler to operate without sending any messages to the
standard output stream.

35

Description of assembler options

36

IAR Assembler
Reference Guide for V850

By default, the assembler sends various insignificant messages via the standard output
stream. Use the -S option to prevent this.

The assembler sends error and warning messages to the error output stream, so they are
displayed regardless of this setting.

This option is not available in the IAR Embedded Workbench IDE.

-s{+]-}

Use the -s option to control whether the assembler is sensitive to the case of user
symbols:

Command line option Description
-s+ Case sensitive user symbols
-s- Case insensitive user symbols

Table 14: Controlling case sensitivity in user symbols (-s)

By default, case sensitivity is on. This means that, for example, LABEL and l1abel refer
to different symbols. Use -s- to turn case sensitivity off, in which case LABEL and 1abel
refer to the same symbol.

Project>Options>Assembler>Language>User symbols are case sensitive

-tn

By default, the assembler sets 8 character positions per tab stop. The -t option allows
you to specify a tab spacing to n, which must be in the range 2 to 9.

This option is useful in conjunction with the list options -L or -1; see page 32 for
additional information.

Project>Options>Assembler>List>Tab spacing

-Usymbol
Use the -U option to undefine the predefined symbol symbo1l.

By default, the assembler provides certain predefined symbols; see Predefined symbols,
page 21. The -U option allows you to undefine such a predefined symbol to make its
name available for your own use through a subsequent -D option or source definition.

Assembler options __¢

Example

To use the name of the predefined symbol __TIME__ for your own purposes, you could
undefine it with:

av850 prog -U__TIME__

This option is not available in the [AR Embedded Workbench IDE.

-v -v{0]1]|2]3}

Use this option to specify the processor core. This table shows how the -v options are
mapped to the V850 devices:

Command line option Description

-vO0 (default) Specifies the V850 core

-vl Specifies the V850E and V850ES cores
-v2 Specifies the V850E2 core

-v3 Specifies the V850E2M core

Table 15: Specifying the processor configuration (-v)

If no processor configuration option is specified, the assembler uses the -0 option by
default.

Project>Options>General options>Target>Device

-w -wlstring] [s]

By default, the assembler displays a warning message when it detects an element of the
source which is legal in a syntactical sense, but might contain a programming error; see
Assembler diagnostics, page 115, for details.

37

Description of assembler options

Use this option to disable warnings. The -w option without a range disables all warnings.
The -w option with a range does this:

Command line option Description

-w+ Enables all warnings

-w- Disables all warnings
-w+n Enables just warning n
-w-n Disables just warning n
-w+m-n Enables warnings m to n
-w-m-n Disables warnings m to n

Table 16: Disabling assembler warnings (-w)

You can only use one -w option on the command line.

By default, the assembler generates exit code 0 for warnings. Use the -ws option to
generate exit code 1 if a warning message is produced.

Example

To disable just warning O (unreferenced label), use this command:

av850 prog -w-0

To disable warnings O to 8, use this command:

av850 prog -w-0-8

To set related options, select:

Project>Options>Assembler>Diagnostics

-x -x{DI2}

Use this option to make the assembler include a cross-reference table at the end of the
list file.

This option is useful in conjunction with the list options -L or -1; see page 32 for
additional information.

IAR Assembler
38 Reference Guide for V850

These parameters are available:

Assembler options __¢

Command line option Description
-xD #defines

-xI Internal symbols
-x2 Dual line spacing

Table 17: Including cross-references in assembler list file (-x)

Project>Options>Assembler>List>Include cross reference

39

Description of assembler options

IAR Assembler
40 Reference Guide for V850

Assembler operators

This chapter first describes the precedence of the assembler operators, and
then summarizes the operators, classified according to their precedence.
Finally, this chapter provides reference information about each operator,
presented in alphabetical order.

Precedence of operators

Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the
highest precedence, that is, first evaluated) to 7 (the lowest precedence, that is, last
evaluated).

These rules determine how expressions are evaluated:

o The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated.

e Operators of equal precedence are evaluated from left to right in the expression.

o Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, this
expression evaluates to 1:

7/(1+(2*3))

Summary of assembler operators

The following tables give a summary of the operators, in order of precedence.
Synonyms, where available, are shown after the operator name.

UNARY OPERATORS - |

+ Unary plus.
BINNOT (~) Bitwise NOT.
BYTEL First byte.
BYTE2 Second byte.
BYTE3 Third byte.
BYTE4 Fourth byte

41

Summary of assembler operators

DATE Current time/date.
HIGH High byte.
HI1 High half word.
HWRD High word.
LOwW Low byte.

Lwl Low half word.
LWRD (OFFSET) Low word.
NOT (!) Logical NOT.
SFB Segment begin.
SFE Segment end.
SIZEOF Segment size.

- Unary minus.

MULTIPLICATIVE ARITHMETIC OPERATORS -2

* Multiplication.
/ Division.
MOD (%) Modulo.

ADDITIVE ARITHMETIC OPERATORS -3

+ Addition.

- Subtraction.

SHIFT OPERATORS -4

SHL (<<) Logical shift left.

SHR (>>) Logical shift right.

AND OPERATORS -5

AND (&&) Logical AND.

BINAND (&) Bitwise AND.

IAR Assembler
42 Reference Guide for V850

Assembler operators ___o

OR OPERATORS -6

BINOR () Bitwise OR.
BINXOR (") Bitwise exclusive OR.
OR (|]) Logical OR.

XOR Logical exclusive OR.

COMPARISON OPERATORS -7

EQ, =, == Equal.

GE, >= Greater than or equal.
GT, > Greater than.

LE, <= Less than or equal.
LT, < Less than.

NE, <>, != Not equal.

UGT Unsigned greater than.
ULT Unsigned less than.

Description of operators
The following sections give detailed descriptions of each assembler operator. See
Expressions, operands, and operators, page 18, for related information. The number
within parentheses specifies the priority of the operator.

* Multiplication (2).
* produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.
Example

2*2 ™ 4
_2%9 —> _4

+ Unary plus (1).

Unary plus operator.

43

Description of operators

44

IAR Assembler
Reference Guide for V850

Example

+3 > 3
3*+2 > 6

Addition (3).

The + addition operator produces the sum of the two operands which surround it. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example

92+19 — 111
242 > 0
—2+-2 > -4

Unary minus (1).

The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the operator is the
two’s complement negation of that integer.

Example

-3 > -3
3% -2 > -6
4--5 = 9

Subtraction (3).

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result is
also signed 32-bit integer.

Example
92-19 —> 73

-2-2 > -4
-2--2 7> 0

Division (2).

/ produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

AND (&&)

BINAND (&)

BINNOT (~)

BINOR (])

Assembler operators ___o

Example

9/2 —> 4
-12/3 = -4
9/2*6 —> 24

Logical AND ().

Use && to perform logical AND between its two integer operands. If both operands are
non-zero the result is 1 (true), otherwise it is O (false).

Example

B’1010 && B’0011 — 1
B’1010 && B’0101 — 1
B’1010 && B’0000 — O

Bitwise AND (5).

Use & to perform bitwise AND between the integer operands. Each bit in the 32-bit
result is the logical AND of the corresponding bits in the operands.

Example

B’1010 & B’0011 — B’0010
B’1010 & B’0101 — B’0000
B’1010 & B'0000 — B’0000

Bitwise NOT (1).

Use ~ to perform bitwise NOT on its operand. Each bit in the 32-bit result is the
complement of the corresponding bit in the operand.

Example

~ B’1010 — B’11111111111111111111111111110101

Bitwise OR (6).

Use | to perform bitwise OR on its operands. Each bit in the 32-bit result is the inclusive
OR of the corresponding bits in the operands.

Example

B’1010 | B’0101 — B’1111

45

Description of operators

46

BINXOR (*)

IAR Assembler
Reference Guide for V850

BYTE1

BYTE2

BYTE3

BYTE4

B’1010 | B’0000 —> B’1010

Bitwise exclusive OR (6).

Use ~ to perform bitwise XOR on its operands. Each bit in the 32-bit result is the
exclusive OR of the corresponding bits in the operands.

Example

B’1010 ~ B’0101 — B’1111
B’1010 ~ B'0011 — B’1001

First byte (1).

BYTEL takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example

BYTE1 0x12345678 — 0x78

Second byte (1).

BYTE? takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

Example

BYTE2 0x12345678 — 0x56

Third byte (1).

BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

Example

BYTE3 0x12345678 — 0x34

Fourth byte (1).

BYTE4 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the high byte (bits 31 to 24) of the operand.

DATE

GE,

>=

Assembler operators ___o

Example

BYTE4 0x12345678 — 0x12

Current time/date (1).
Use the DATE operator to specify when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59).

DATE 2 Current minute (0-59).

DATE 3 Current hour (0-23).

DATE 4 Current day (1-31).

DATE 5 Current month (1-12).

DATE 6 Current year MOD 100 (1998 —98, 2000 —00, 2002 —02).
Example

To assemble the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

Equal (7).

= evaluates to 1 (true) if its two operands are identical in value, or to 0 (false) if its two
operands are not identical in value.

'"ABC' = 'ABCD' ™ 0

Greater than or equal (7).

>= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value than
the right operand, otherwise it is O (false).

Example
1>=2—>0
2>=1—>1

47

Description of operators

48

IAR Assembler
Reference Guide for V850

GT, >

HIGH

HI1

1>=1—>1

Greater than (7).

> evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand, otherwise it is O (false).

Example

-1 >1 >0
2 >1 1
1>1—>0

High byte (1).

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

Example

HIGH OxABCD — OxAB

High half word compensated for sign extension of the lower half word (1).

In the V850 microcontroller, several instructions (for example, MOVEA and LD) can be
used together with a 16-bit signed value. The HI1 operator returns the high half word of
a 32-bit unsigned integer, compensated for the sign-extension performed by Lw1l.

The HI1 operator returns the high half word when the lower half word is non-negative
when interpreted as a 16-bit signed value. Should the lower half word be negative, HI1
returns the high half word plus 1.

In general, this equation should always hold for any 32-bit value of x:

x = (HI1l(x) << 16) + LWl (x)

Examples

HI1 (0x12345678) — 0x1234
HI1 (0x456789AB) —> 0x4568

To move a 32-bit value to a register, this sequence could be used:

MOVHI HI1(x), RO, R1
MOVEA LWl (x), R1, R1

HWRD

LE, <=

Low

Assembler operators ___o

To load a value from memory:

MOVHI HI1(x), RO, R1
LD.H Lwl(x)[R1], R5

High half word (1).

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

Example

HWRD 0x12345678 — 0x1234

Less than or equal (7)

<= evaluates to 1 (true) if the left operand has a numeric value that is lower than or equal
to the right operand, otherwise it is O (false).

Example
1 <=2 —>1

2 <=17">0
1 <=1 —>1

Low byte (1).

Low takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example

LOW OxABCD — 0xCD

Less than (7).

< evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand, otherwise it is O (false).

Example

-1 <2 > 1
2 <1 >0
2 <2 ™0

49

Description of operators

50

NE,

IAR Assembler
Reference Guide for V850

LWRD

MOD

<>,

Lwl

(%)

Low half word with sign extension (1).

Lw1l takes a single operand, which is interpreted as an unsigned, 32-bit, integer value.
The result is the low half word (bits O to 15) of the operand sign extended to a 32-bit
integer.

Lw1l is implemented for MOVEA and instructions that access memory.

Examples

LWl (0x12345678) — 0x00005678
HI1 (0x456789AB) —> OxXFFFF89AB

To move a 32-bit value to a register, this sequence could be used:

MOVHI HI1(x), RO, R1
MOVEA LWl (x), R1, R1

Low word (1).

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

Example

LWRD 0x12345678 — 0x5678

Modulo (2).

% produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a signed
32-bit integer.

X % Yisequivalent to Xx-Y* (X/Y) using integer division.

Example

2% 2 2>0
12 7 > 5
3% 2 > 1

Not equal (7).

<> evaluates to 0 (false) if its two operands are identical in value or to 1 (true) if its two
operands are not identical in value.

NOT (!)

OR (]

SFB

Assembler operators ___o

Example

1 <>2 —>1
2 <>2 >0
'A' <> 'B' — 1

Logical NOT (1).

Use ! to negate a logical argument.

Example

! B’0101 > 0
! B’0000 > 1

Logical OR (6).

Use | | to perform a logical OR between two integer operands.

Example

B’1010 || B’0000 — 1
B'0000 || B’0000 —> 0

Segment begin (1).

Syntax

SFB (segment [{+|-}offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFB is used.

offset An optional offset from the start address. The parentheses are

optional if offset is omitted.

Description

SFB accepts a single operand to its right. The operand must be the name of a relocatable
segment.

The operator evaluates to the absolute address of the first byte of that segment. This
evaluation occurs at linking time.

51

Description of operators

52

IAR Assembler
Reference Guide for V850

SFE

Example
name segmentBegin
rseg MYCODE:CODE ; Forward declaration of MYCODE.
rseg SEGTAB:CONST
start dclé6 sfb (MYCODE)
end

Even if this code is linked with many other modules, start is still set to the address of
the first byte of the segment.

Segment end (1).

Syntax

SFE (segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFE is used.

offset An optional offset from the start address. The parentheses are

optional if offset is omitted.

Description

SFE accepts a single operand to its right. The operand must be the name of a relocatable
segment. The operator evaluates to the segment start address plus the segment size. This
evaluation occurs at linking time.

Example
name segmentEnd
rseg MYCODE:CODE ; Forward declaration of MYCODE.
rseg SEGTAB:CONST
end dclé sfe (MYCODE)
end

Even if this code is linked with many other modules, end is still set to the address of the
last byte of the segment.

The size of the segment My_SEGMENT can be calculated as:

SFE (MY_SEGMENT) -SFB (MY_SEGMENT)

Assembler operators ___o

SHL (<<) Logical shift left (4).

Use << to shift the left operand, which is always treated as unsigned, to the left. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

B’00011100 << 3 — B’11100000
B’00000111111111111 << 5 — B’11111111111100000
14 << 1 — 28

SHR (>>) Logical shift right (4).

Use >> to shift the left operand, which is always treated as unsigned, to the right. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

B’01110000 >> 3 — B’'00001110
B/1111111111111111 >> 20 > 0
14 >> 1 —> 7

SIZEOF Segment size (1).

Syntax

SIZEOF segment

Parameters

segment The name of a relocatable segment, which must be defined
before SIZEOF is used.

Description

SIZEOF generates SFE-SFB for its argument, which should be the name of a relocatable
segments; that is, it calculates the size in bytes of a segment. This is done when modules
are linked together.

53

Description of operators

54

IAR Assembler
Reference Guide for V850

UGT

ULT

XOR

Example
module table
rseg MYCODE:CODE ; Forward declaration of MYCODE.
rseg SEGTAB:CONST
size dc32 sizeof (MYCODE)
endmod

module application

rseg MYCODE : CODE

nop ; Placeholder for application.
end

sets size to the size of the segment CODE.

Unsigned greater than (7).

UGT evaluates to 1 (true) if the left operand has a larger value than the right operand,
otherwise it is 0 (false). The operation treats the operands as unsigned values.
Example

2 UGT 1 = 1
-1 UGT 1 > 1

Unsigned less than (7).

ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand,
otherwise it is O (false). The operation treats the operands as unsigned values.

Example

1 uLT 2 > 1
-1 ULT 2 > 0

Logical exclusive OR (6).

XOR evaluates to 1 (true) if either the left operand or the right operand is non-zero, but
to O (false) if both operands are zero or both are non-zero. Use XOR to perform logical
XOR on its two operands.

Example

B’0101 XOR B’1010 —> 0
B’0101 XOR B’'0000 —> 1

Assembler directives

This chapter gives an alphabetical summary of the assembler directives and
provides detailed reference information for each category of directives.

Summary of assembler directives

The assembler directives are classified into these groups according to their function:

Module control directives, page 59

Symbol control directives, page 62

Segment control directives, page 65

Value assignment directives, page 70
Conditional assembly directives, page 75
Macro processing directives, page 77

Listing control directives, page 85

C-style preprocessor directives, page 89

Data definition or allocation directives, page 94
Assembler control directives, page 96

Function directives, page 98

Call frame information directives, page 99.

This table gives a summary of all the assembler directives.

Directive Description Section

_args Is set to number of arguments passed to macro. Macro processing

S Includes a file. Assembler control
#define Assigns a value to a label. C-style preprocessor
#elif Introduces a new condition ina #1if...#endif C-style preprocessor

block.

#else Assembles instructions if a condition is false. C-style preprocessor
#endif Endsa #if, #ifdef, or #ifndef block. C-style preprocessor
#error Generates an error. C-style preprocessor
#if Assembles instructions if a condition is true. C-style preprocessor
#ifdef Assembles instructions if a symbol is defined. C-style preprocessor

Table 18: Assembler directives summary

Summary of assembler directives

56

IAR Assembler

Reference Guide for V850

Directive Description Section

#ifndef Assembles instructions if a symbol is undefined. C-style preprocessor
#include Includes a file. C-style preprocessor
#line Changes the line numbers. C-style preprocessor
#message Generates a message on standard output. C-style preprocessor
#pragma Recognized but ignored. C-style preprocessor
#undef Undefines a label. C-style preprocessor

/*comment*/

/7

ALIAS
ALIGN

ALIGNRAM

ARGFRAME

ASEG
ASEGN
ASSIGN
BLOCK

CASEOFF
CASEON

CFI

COL
COMMON

DB

DC8

DCl6

DC32

C-style comment delimiter.

C+style comment delimiter.

Assigns a permanent value local to a module.
Assigns a permanent value local to a module.

Aligns the program location counter by inserting
zero-filled bytes.

Aligns the program location counter.

Declares the space used for the arguments to a
function.

Begins an absolute segment.
Begins a named absolute segment.
Assigns a temporary value.

Specifies the block number for an alias created by
the SYMBOL directive.

Disables case sensitivity.
Enables case sensitivity.

Specifies call frame information.

Sets the number of columns per page.
Begins a common segment.

Generates 8-bit constants, including strings.

Generates 8-bit constants, including strings.

Generates |6-bit half word constants.

Generates 32-bit word constants.

Assembler control
Assembler control
Value assignment
Value assignment

Segment control

Segment control

Function

Segment control
Segment control
Value assignment

Symbol control

Assembler control
Assembler control

Call frame
information

Listing control
Segment control
Data definition or
allocation

Data definition or
allocation

Data definition or
allocation

Data definition or
allocation

Table 18: Assembler directives summary (Continued)

Assembler directives ___¢

Directive Description Section

DEFINE Defines a file-wide value. Value assignment

DH Generates |6-bit half word constants. Data definition or
allocation

DS Allocates space for 8-bit integers. Data definition or
allocation

DS8 Allocates space for 8-bit integers. Data definition or
allocation

DS16 Allocates space for |6-bit integers. Data definition or
allocation

DS32 Allocates space for 32-bit integers. Data definition or
allocation

Dw Generates 32-bit word constants. Data definition or
allocation

ELSE Assembles instructions if a condition is false. Conditional assembly

ELSEIF Specifies a new condition in an IF...ENDIF block. Conditional assembly

END Ends the assembly of the last module in a file. Module control

ENDIF Ends an IF block. Conditional assembly

ENDM Ends a macro definition. Macro processing

ENDMOD Ends the assembly of the current module. Module control

ENDR Ends a repeat structure. Macro processing

EQU Assigns a permanent value local to a module. Value assignment

EVEN Aligns the program counter to an even address. Segment control

EXITM Exits prematurely from a macro. Macro processing

EXTERN Imports an external symbol. Symbol control

FUNCALL Declares that the function caller calls the Function

function callee.

FUNCTION Declares a label name to be a function. Function

IF Assembles instructions if a condition is true. Conditional assembly

IMPORT Imports an external symbol. Symbol control

LIBRARY Begins a library module. Module control

LIMIT Checks a value against limits. Value assignment

LOCAL Creates symbols local to a macro. Macro processing

LOCFRAME Declares the space used for the locals in a function. Function

Table 18: Assembler directives summary (Continued)

57

Summary of assembler directives

58

IAR Assembler

Reference Guide for V850

Directive Description Section
LSTCND Controls conditional assembler listing. Listing control
LSTCOD Controls multi-line code listing. Listing control
LSTEXP Controls the listing of macro generated lines. Listing control
LSTMAC Controls the listing of macro definitions. Listing control
LSTOUT Controls assembler-listing output. Listing control
LSTPAG Retained for backward compatibility reasons. Listing control
Recognized but ignored.
LSTREP Controls the listing of lines generated by repeat Listing control
directives.
LSTXRF Generates a cross-reference table. Listing control
MACRO Defines a macro. Macro processing
MODULE Begins a library module. Module control
NAME Begins a program module. Module control
ODD Aligns the program location counter to an odd Segment control
address.
ORG Sets the program location counter. Segment control
OVERLAY Recognized but ignored. Symbol control
PAGE Retained for backward compatibility reasons. Listing control
PAGSIZ Retained for backward compatibility reasons. Listing control
PROGRAM Begins a program module. Module control
PUBLIC Exports symbols to other modules. Symbol control
PUBWEAK Exports symbols to other modules, multiple Symbol control
definitions allowed.
RADIX Sets the default base. Assembler control
REPT Assembles instructions a specified number of times. Macro processing
REPTC Repeats and substitutes characters. Macro processing
REPTI Repeats and substitutes strings. Macro processing
REQUIRE Forces a symbol to be referenced. Symbol control
RSEG Begins a relocatable segment. Segment control
RTMODEL Declares runtime model attributes. Module control
SET Assigns a temporary value. Value assignment
STACK Begins a stack segment. Segment control

Table 18: Assembler directives summary (Continued)

Assembler directives ___¢

Directive Description Section

SYMBOL Creates an alias that can be used for referringtoa Symbol control
C/C++ symbol.

VAR Assigns a temporary value. Value assignment

Table 18: Assembler directives summary (Continued)

Module control directives
Module control directives are used for marking the beginning and end of source program
modules, and for assigning names and types to them. See Expression restrictions, page
24, for a description of the restrictions that apply when using a directive in an

expression.

Directive Description Expression restrictions

END Ends the assembly of the last module in a file. Locally defined symbols
plus offset or integer
constants

ENDMOD Ends the assembly of the current module. Locally defined symbols
plus offset or integer
constants

LIBRARY Begins a library module. No external references
Absolute

MODULE Begins a library module. No external references
Absolute

NAME Begins a program module. No external references
Absolute

PROGRAM Begins a program module. No external references
Absolute

RTMODEL Declares runtime model attributes. Not applicable

Table 19: Module control directives

SYNTAX

END [address]

ENDMOD [address]
LIBRARY symbol [(expr)]
MODULE symbol [(expr)]
NAME symbol [(expr)]
PROGRAM symbol [(expr)]
RTMODEL key, value

59

Module control directives

60

IAR Assembler
Reference Guide for V850

PARAMETERS

address An expression (label plus offset) that can be resolved at assembly time.
It is output in the object code as a program entry address.

expr An optional expression used by the assembler to encode the runtime
options. It must be within the range 0-255 and evaluate to a constant
value. The expression is only meaningful if you are assembling source
code that originates as assembler output from the compiler.

key A text string specifying the key.

symbol Name assigned to module, used by XLINK, XAR, and XLIB when
processing object files.

value A text string specifying the value.

DESCRIPTIONS

Beginning a program module

Use NAME or PROGRAM to begin a program module, and to assign a name for future
reference by the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a library module

Use MODULE or LIBRARY to create libraries containing several small modules—like
runtime systems for high-level languages—where each module often represents a single
routine. With the multi-module facility, you can significantly reduce the number of
source and object files needed.

Library modules are only copied into the linked code if other modules reference a public
symbol in the module.

Terminating a module

Use ENDMOD to define the end of a module.

Terminating the source file

Use END to indicate the end of the source file. Any lines after the END directive are
ignored. The END directive also ends the last module in the file, if this is not done
explicitly with an ENDMOD directive.

Assembler directives ___¢

Assembling multi-module files

Program entries must be either relocatable or absolute, and will show up in XLINK load
maps, and in some of the hexadecimal absolute output formats. Program entries must
not be defined externally.

These rules apply when assembling multi-module files:

o At the beginning of a new module all user symbols are deleted, except for those
created by DEFINE, #define, or MACRO, the location counters are cleared, and the
mode is set to absolute.

e Listing control directives remain in effect throughout the assembly.
Note: END must always be placed after the /ast module, and there must not be any source

lines (except for comments and listing control directives) between an ENDMOD and the
next module (beginning with MODULE, LIBRARY, NAME, Or PROGRAM).

If any of the directives NAME, MODULE, LIBRARY, Or PROGRAM is missing, the module is
assigned the name of the source file and the attribute program.

Declaring runtime model attributes

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscores. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C or C++ code, and you want to
control the module consistency, refer to the JAR C/C++ Compiler Reference Guide for
V850.

Examples

The following example defines three modules where:

e MOD_1 and MOD_2 cannot be linked together since they have different values for
runtime model CAN.

e MOD_1 and MOD_3 can be linked together since they have the same definition of
runtime model RTOS and no conflict in the definition of CAN.

e MOD_2 and MOD_3 can be linked together since they have no runtime model
conflicts. The value * matches any runtime model value.

61

Symbol control directives

62

module mod_1

rtmodel "CAN", "ISO11519"
rtmodel "RTOS", "PowerPac"
endmo

module mod_2

rtmodel "CAN", "IS011898"
rtmodel "RTOS", "*"
endmo

module mod_3
rtmodel "RTOS", "PowerPac"

end

Symbol control directives

IAR Assembler
Reference Guide for V850

These directives control how symbols are shared between modules.

Directive Description

BLOCK Specifies the block number for an alias created by the SYMBOL
directive.

EXTERN, IMPORT Imports an external symbol.

OVERLAY Recognized but ignored.

PUBLIC Exports symbols to other modules.

PUBWEAK Exports symbols to other modules, multiple definitions allowed.

REQUIRE Forces a symbol to be referenced.

SYMBOL Creates an alias for a C/C++ symbol.

Table 20: Symbol control directives

SYNTAX

label BLOCK old_label, block_number
EXTERN symbol [, symbol]

IMPORT symbol [,symboll]

PUBLIC symbol [,symbol]

PUBWEAK symbol [,symbol]

REQUIRE symbol

label SYMBOL "C/C++_symbol" [,o0ld_labell]

Assembler directives ___¢

PARAMETERS

block_number Block number of the alias created by the syMBOL directive.

C/C++_symbol C/C++ symbol to create an alias for.

label Label to be used as an alias for a C/C++ symbol.
old_label Alias created earlier by a SYMBOL directive.
symbol Symbol to be imported or exported.
DESCRIPTIONS

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. Symbols defined
PUBLIC can be relocatable or absolute, and can also be used in expressions (with the
same rules as for other symbols).

The pUBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the Low,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There can be any number of PUBLIC-defined symbols in a module.

Exporting symbols with multiple definitions to other modules

PUBWEAK is similar to PUBLIC except that it allows the same symbol to be defined
several times. Only one of those definitions is used by XLINK. If a module containing
a PUBLIC definition of a symbol is linked with one or more modules containing
PUBWEAK definitions of the same symbol, XLINK uses the PUBLIC definition.

A symbol defined as PUBWEAK must be a label in a segment part, and it must be the only
symbol defined as PUBLIC or PUBWEAK in that segment part.

Note: Library modules are only linked if a reference to a symbol in that module is made,
and that symbol was not already linked. During the module selection phase, no
distinction is made between PUBLIC and PUBWEAK definitions. This means that to
ensure that the module containing the PUBLIC definition is selected, you should link it
before the other modules, or make sure that a reference is made to some other PUBLIC
symbol in that module.

Importing symbols

Use EXTERN or IMPORT to import an untyped external symbol.

63

Symbol control directives

64

IAR Assembler
Reference Guide for V850

The REQUIRE directive marks a symbol as referenced. This is useful if the segment part
containing the symbol must be loaded for the code containing the reference to work, but
the dependence is not otherwise evident.

Referring to scoped C/C++ symbols

Use the sYMBOL directive to create an alias for a C/C++ symbol. You can use the alias
to refer to the C/C++ symbol. The symbol and the alias must be located within the same
scope.

Use the BLOCK directive to provide the block scope for the alias.

Typically, the sYMBOL and the BLOCK directives are for compiler internal use only, for
example, when referring to objects inside classes or namespaces. For detailed
information about how to use these directives, declare and define your C/C++ symbol,
compile, and view the assembler listfile output.

EXAMPLES

The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules.

It defines print as an external routine; the address is resolved at link time.

name error
extern print
public err

err jarl print,R10
db |l~k‘k‘k‘kError‘k‘k~k~k|l,O
jmp [R6]
end err

Because the message is enclosed in double quotes, the string will be followed by a zero
byte.

Assembler directives ___¢

Segment control directives

The segment directives control how code and data are located. See Expression
restrictions, page 24, for a description of the restrictions that apply when using a

directive in an expression.

Directive Description Expression restrictions
ALIGN Aligns the program location counter by inserting ~ No external references
zero-filled bytes. Absolute

ALIGNRAM Aligns the program location counter. No external references
Absolute

ASEG Begins an absolute segment. No external references
Absolute

ASEGN Begins a named absolute segment. No external references
Absolute

COMMON Begins a common segment. No external references
Absolute

EVEN Aligns the program counter to an even address. No external references
Absolute

ODD Aligns the program counter to an odd address. No external references
Absolute

ORG Sets the location counter. No external references
Absolute (see below)

RSEG Begins a relocatable segment. No external references
Absolute

STACK Begins a stack segment.

Table 21: Segment control directives

SYNTAX

ALIGN align [,value]

ALIGNRAM align

ASEG [start]

ASEGN segment [:typel, address

COMMON segment [:typel [(align)]

EVEN [value]

ODD [value]

ORG expr

RSEG segment [:type]l [flag]l [(align)]

65

Segment control directives

STACK segment

[:type]l [(align)]

PARAMETERS

address

align

expr

flag

segment

start

type

value

IAR Assembler
66 Reference Guide for V850

Address where this segment part is placed.

The power of two to which the address should be aligned, in most
cases in the range O to 30.

The default align value is 0, except for code segments where the
default is 1.

Address to set the location counter to.

NOROOT, ROOT

NOROOT means that the segment part is discarded by the linker if no
symbols in this segment part are referred to. Normally, all segment
parts except startup code and interrupt vectors should set this flag.
The default mode is ROOT which indicates that the segment part must
not be discarded.

REORDER, NOREORDER

REORDER allows the linker to reorder segment parts. For a given
segment, all segment parts must specify the same state for this flag.
The default mode is NOREORDER which indicates that the segment
parts must remain in order.

SORT, NOSORT

SORT means that the linker sorts the segment parts in decreasing
alignment order. For a given segment, all segment parts must specify
the same state for this flag. The default mode is NOSORT which
indicates that the segment parts are not sorted.

The name of the segment.

A start address that has the same effect as using an ORG directive at
the beginning of the absolute segment.

The memory type, typically CODE or DATA. In addition, any of the
types supported by the IAR XLINK Linker.

Byte value used for padding, default is zero.

Assembler directives ___¢

DESCRIPTIONS

Beginning an absolute segment

Use ASEG to set the absolute mode of assembly, which is the default at the beginning of
a module.

If the parameter is omitted, the start address of the first segment is 0, and subsequent
segments continue after the last address of the previous segment.

Beginning a named absolute segment
Use ASEGN to start a named absolute segment located at the address address.

This directive has the advantage of allowing you to specify the memory type of the
segment.

Beginning a relocatable segment

Use RSEG to start a new segment. The assembler maintains separate location counters
(initially set to zero) for all segments, which makes it possible to switch segments and
mode anytime without having to save the current program location counter.

Up to 65536 unique, relocatable segments can be defined in a single module.

Beginning a common segment

Use COMMON to place data in memory at the same location as COMMON segments from
other modules that have the same name. In other words, all coMMON segments of the
same name start at the same location in memory and overlay each other.

Obviously, the coMMON segment type should not be used for overlaid executable code.
A typical application would be when you want several different routines to share a
reusable, common area of memory for data.

It can be practical to have the interrupt vector table in a COMMON segment, thereby
allowing access from several routines.

The final size of the COMMON segment is determined by the size of largest occurrence of
this segment. The location in memory is determined by the XLINK -z command; see
the IAR Linker and Library Tools Reference Guide.

Use the align parameter in any of the above directives to align the segment start

address.

Setting the program location counter (PLC)

Use ORG to set the program location counter of the current segment to the value of an
expression. When ORG is used in an absolute segment (ASEG), the parameter expression

67

Segment control directives

must be absolute. However, when ORG is used in a relative segment (RSEG), the
expression can be either absolute or relative (and the value is interpreted as an offset
relative to the segment start in both cases).

The program location counter is set to zero at the beginning of an assembler module.

Aligning a segment

Use ALIGN to align the program location counter to a specified address boundary. The
expression gives the power of two to which the program counter should be aligned and
the permitted range is O to 8.

The alignment is made relative to the segment start; normally this means that the
segment alignment must be at least as large as that of the alignment directive to give the
desired result.

ALIGN aligns by inserting zero/filled bytes, up to a maximum of 255. The EVEN directive
aligns the program counter to an even address (which is equivalent to ALIGN 1) and the
opp directive aligns the program location counter to an odd address. The byte value for
padding must be within the range 0 to 255.

Use ALIGNRAM to align the program location counter by incrementing it; no data is
generated. The expression can be within the range 0 to 30.

EXAMPLES

Beginning an absolute segment

This example assembles interrupt routine entry instructions in the appropriate interrupt
vectors using an absolute segment:

extern nmi_fnc, trap0_fnc, trapl_fnc, ilgop_fnc

aseg

org 10h

jr nmi_fnc
org 40h

jr trap0_fnc
org 50h

jr trapl_fnc
org 60h

jr ilgop_fnc

IAR Assembler
68 Reference Guide for V850

Assembler directives ___¢

org Oh

reset jr main
org 2080h

main mov 1,R6 ; Start of code
end

Beginning a relocatable segment

In the following example, the data following the first RSEG directive is placed in a
relocatable segment called TABLE.

The code following the second RSEG directive is placed in a relocatable segment called
CODE:

extern divrtn,mulrtn

v define 01ah
rseg TABLE
dw divrtn,mulrtn
org $+8
dw subrtn
rseg CODE

; Subtract R6 with content of V

; Store result back into V (--> V := (R6-V))
subrtn 1d.w V[RO],R5

sub R6,R5

st.w R5,V[RO]

Jjmp [R10]

end

Beginning a common segment
This example defines two common segments containing variables:

name commonl
common data

count dw 1
endmod
name common?2
common data
up ds 1
org $+3

69

Value assignment directives

70

down ds 1
end

Because the common segments have the same name, data, the variables up and down
refer to the same locations in memory as the first and last bytes of the 4-byte variable
count.

Aligning a segment

This example starts a relocatable segment, moves to an even address, and adds some
data. It then aligns to a 64-byte boundary before creating a 64-byte table.

name alignment

rseg DATA ; Start a relocatable data segment.

even ; Ensure it is on an even boundary.
target dclé6 1 ; target and best will be on an
best dclé6 1 ; even boundary.

align 6 ; Now, align to a 64-byte boundary,
results ds8 64 ; and create a 64-byte table.

end

Value assighment directives

IAR Assembler
Reference Guide for V850

These directives are used for assigning values to symbols.

Directive Description
=, EQU Assigns a permanent value local to a module.
ALIAS Assigns a permanent value local to a module.

ASSIGN, SET, VAR Assigns a temporary value.
DEFINE Defines a file-wide value.

LIMIT Checks a value against limits.

Table 22: Value assignment directives

SYNTAX

label = expr

label ALIAS expr

label ASSIGN expr

label DEFINE const_expr
label EQU expr

LIMIT expr, min, max, message

Assembler directives ___¢

label SET expr
label VAR expr

PARAMETERS

const_expr Constant value assigned to symbol.

expr Value assigned to symbol or value to be tested.

label Symbol to be defined.

message A text message that is printed when expr is out of range.
min, max The minimum and maximum values allowed for expr.

OPERAND MODIFIERS

These prefixes can be used for modifying operands:

Modifier Description
M: Forces the assembler to use 23-bit addressing
F: Forces the assembler to use 32-bit addressing

Table 23: Operand modifiers

Example

The operand modifier F: is needed to determine whether
JARL disp22,reg?2

or
JARL disp32,reg2

shall be used. For example:

JARL F:max,R2
DESCRIPTIONS

Defining a temporary value

Use ASSIGN, SET, or VAR to define a symbol that might be redefined, such as for use
with macro variables. Symbols defined with ASSIGN, SET, or VAR cannot be declared
PUBLIC.

71

Value assignment directives

72

IAR Assembler
Reference Guide for V850

Defining a permanent local value

Use EQU or = to create a local symbol that denotes a number or offset. The symbol is
only valid in the module in which it was defined, but can be made available to other
modules with a PUBLIC directive (but not with a PUBWEAK directive).

Use EXTERN to import symbols from other modules.

Defining a permanent global value

Use DEFINE to define symbols that should be known to the module containing the
directive and all modules following that module in the same source file. If a DEFINE
directive is placed outside of a module, the symbol will be known to all modules
following the directive in the same source file.

A symbol which was given a value with DEFINE can be made available to modules in
other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file. Also, the
expression assigned to the defined symbol must be constant.
Checking symbol values

Use LIMIT to check that expressions lie within a specified range. If the expression is
assigned a value outside the range, an error message appears.

The check occurs as soon as the expression is resolved, which is during linking if the
expression contains external references. The min and max expressions cannot involve
references to forward or external labels, that is they must be resolved when encountered.

EXAMPLES

Redefining a symbol

This example uses SET to redefine the symbol cons in a loop to generate a table of the
first 8 powers of 3:

name table
cons set 1

; Generate table of powers of 3.

cr_tabl macro times
dc32 cons

cons set cons * 3
if times > 1
cr_tabl times - 1
endif
endm

table

rseg

cr_tabl 4

end

It generates this code:

0 3 o Ul W N

PP R R PP RRPRERRERERERERRRERERPERERRPER PP
S S I I S o O T N O o o T e T O S e S N S S A)

0 3 o Ul W N

w

e)
N BB O

00000000
00000001
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000003
00000004
00000004
00000004
00000009
00000008
00000008
00000008
0000001B
0000000C
0000000C
0000000C
00000051
00000010
00000010
00000010
00000010
00000010
00000010
00000010
00000010
00000010
00000010
00000010
00000010

00010000

00030000

00090000

001B0000O

CODE : CODE

cons

expon3

cons

main

cons

cons

cons

cons

NAME
SET

MACRO
DW

SET

IF
expon3
ENDIF
ENDMAC

expon3
Dw

SET

IF
expon3
DW

SET

IF
expon3
DW

SET

IF
expon3
Dw

SET

IF
expon3
ENDIF
ENDMAC
ENDIF
ENDMAC
ENDIF
ENDMAC
ENDIF
ENDMAC

END

table

times
cons
cons * 3
times>1

times-1

cons
cons * 3
4>1

4-1

cons

cons * 3
4-1>1
4-1-1
cons

cons * 3
4-1-1>1
4-1-1-1
cons

cons * 3
4-1-1-1>1
4-1-1-1-1

Assembler directives ___¢

73

Value assignment directives

74

IAR Assembler
Reference Guide for V850

Using local and global symbols

In the following example the symbol value defined in module add1 is local to that
module; a distinct symbol of the same name is defined in module add2. The DEFINE
directive is used for declaring 1ocn for use anywhere in the file:

name addl
aseg
org 100H
v define 01ah
locn define 020h
value equ 77
mov locn,R6
mov value,R7
add R6,R7
; Now expect R8 to contain address to return to.
jmp [R8]
endmod
name add2
aseg
org 120H
value equ 88
mov locn,R6
mov value,R7
add R6,R7
; Now expect R8 to contain address to return to.
Jjmp [R8]
end

The symbol 1ocn defined in module add1 is also available to module addz2.

Using special function registers

In this example several SFR variables are declared with a variety of access capabilities:

rseg CODE : CODE
sfrb portd = 0x12 ; Byte read/write access.
sfrw ocrl = 0x2A ; Word read/write access.
const sfrb pind = 0x10 ; Byte read only access.
sfrtype portb write, byte = 0x18 ; Byte write only
; access.
end

Using the LIMIT directive

The following example sets the value of a variable called speed and then checks it, at
assembly time, to see if it is in the range 10 to 30. This might be useful if speed is often

Assembler directives ___¢

changed at compile time, but values outside a defined range would cause undesirable

behavior.
module setLimit

speed set 23
limit speed, 10,30, "Speed is out of range!"
end

Conditional assembly directives

These directives provide logical control over the selective assembly of source code. See
Expression restrictions, page 24, for a description of the restrictions that apply when
using a directive in an expression.

Directive Description Expression restrictions

ELSE Assembles instructions if a condition is false.

ELSEIF Specifies a new condition in an IF...ENDIF block. No forward references
No external references
Absolute
Fixed

ENDIF Ends an IF block.

IF Assembles instructions if a condition is true. No forward references
No external references
Absolute
Fixed

Table 24: Conditional assembly directives

SYNTAX

ELSE

ELSEIF condition

ENDIF

IF condition

PARAMETERS

condition One of these:

An absolute expression The expression must not contain

forward or external references, and
any non-zero value is considered as
true.

75

Conditional assembly directives

stringl=string2 The condition is true if stringl and
string2 have the same length and
contents.
stringl<>string2 The condition is true if stringl and
string2 have different length or
contents.
DESCRIPTIONS

Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly
time. If the condition following the IF directive is not true, the subsequent instructions
do not generate any code (that is, it is not assembled or syntax checked) until an ELSE
or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembly
directives can be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except for END) as well as the inclusion of files can be disabled
by the conditional directives. Each IF directive must be terminated by an ENDIF
directive. The ELSE directive is optional, and if used, it must be inside an IF...ENDIF
block. IF. . .ENDIF and IF...ELSE. . .ENDIF blocks can be nested to any level.

EXAMPLES

If the argument to the macro is 0, it generates a SUB instruction to save instruction
cycles; otherwise it generates a MOV instruction:

fmov macro a,b
if a=0
sub b, b
else
mov a,b
endif
endmac

It could be tested with this program:

name main

main fmov 3,R6
fmov 0,R7
end

IAR Assembler
76 Reference Guide for V850

Assembler directives ___¢

Macro processing directives

These directives allow user macros to be defined. See Expression restrictions, page 24,
for a description of the restrictions that apply when using a directive in an expression.

Directive Description Expression restrictions

_args Is set to number of arguments passed to macro.

ENDM Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times. No forward references
No external references
Absolute
Fixed

REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes text.

Table 25: Macro processing directives

SYNTAX

_args

ENDM

ENDR

EXITM

LOCAL symbol [, symboll

name MACRO [argument] [,argument]
REPT expr

REPTC formal,actual

REPTI formal,actual [,actuall]

PARAMETERS

actual A string to be substituted.
argument A symbolic argument name.
expr An expression.

77

Macro processing directives

78

IAR Assembler
Reference Guide for V850

formal An argument into which each character of actual (REPTC) or each
actual (REPTI) is substituted.

name The name of the macro.
symbol A symbol to be local to the macro.
DESCRIPTIONS

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro, you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

Defining a macro

You define a macro with the statement:

name MACRO [argument] [,argument]

Here nameis the name you are going to use for the macro, and argument is an argument
for values that you want to pass to the macro when it is expanded.

For example, you could define a macro errmac as follows:

errMac macro text
jarl abort,R7
pb text, 0
endmac

This macro uses a parameter text to set up an error message for a routine abort. You
would call the macro with a statement such as:

errmac 'Disk not ready'
The assembler expands this to:

jarl abort,R7
db 'Disk not ready',0

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \1 to \9 and \A to \z.

Assembler directives ___¢

The previous example could therefore be written as follows:

errmac macro
jarl abort,R7
db \1,0
endmac

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LocaL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

For example:

macmov macro op
mov op
endmac

The macro can be called using the macro quote characters:

name main
macmov <1,R6>
end

You can redefine the macro quote characters with the -M command line option; see -M,
page 33.
Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. This example
shows how _args can be used:

fill macro
if _args == 2
rept \2
dc8 \1
endr
else

79

Macro processing directives

80

IAR Assembler
Reference Guide for V850

dc8 \1
endif
endm

module fill_example

rseg CODE : CODE
fill 3

£fill 4, 3

end

It generates this code:

19 00000000 module fill_ example
20 00000000 rseg CODE: CODE
21 00000000 £i11 3

21.1 00000000 if _args ==
21.2 00000000 rept

21.3 00000000 dc8 3

21.4 00000000 endr

21.5 00000000 else

21.6 00000000 03 dc8 3

21.7 00000001 endif

21.8 00000001 endm

22 00000001 £i11 4, 3
22.1 00000001 if _args ==
22.2 00000001 rept 3

22.3 00000001 dc8 4

22.4 00000001 endr

22.5 00000001 04 dc8 4

22.6 00000004 else

22.7 00000004 dc8 4

22.8 00000004 endif

22.9 00000004 endm

23 00000004 end

How macros are processed
The macro process consists of three distinct phases:

1 The assembler scans and saves macro definitions. The text between MACRO and
ENDM is saved but not syntax checked. Include-file references $ £i1e are recorded
and included during macro expansion.

2 A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes
its input from the requested macro definition.

Assembler directives ___¢

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

3 The expanded line is then processed as any other assembler source line. The input
stream to the assembler continues to be the output from the macro processor, until
all lines of the current macro definition have been read.

Repeating statements

Use the REPT. . . ENDR structure to assemble the same block of instructions several
times. If expr evaluates to 0 nothing is generated.

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTT to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

EXAMPLES

This section gives examples of the different ways in which macros can make assembler
programming easier.

Coding inline for efficiency

In time-critical code it is often desirable to code routines inline to avoid the overhead of
a subroutine call and return. Macros provide a convenient way of doing this.

This example outputs bytes from a buffer to a port:

io_port define OFFFFF000h
rseg DATA
buffer ds 512 ; Buffer
bufend ds 0
rseg CODE
play mov buffer,R6
mov IO_PORT,R8
mov 1,R9
mov bufend, R10
loop 1d.b 0[R6],R7

st.b R7,0[R8]

81

Macro processing directives

82

IAR Assembler
Reference Guide for V850

add
cmp
bne

end

R9,R6
R10,R6
loop

The main program calls this routine as follows:

doplay jarl

play, R5

For efficiency we can recode this using a macro:

io_port define

rseg
buffer ds
bufend ds

play macro
local
mov
mov
mov
mov

loop 1d.b
st.b
add
cmp
bne
endmac

name
rseg

doplay play

end

OFFFFF000h

DATA
512 ; Buffer
0

loop
buffer,R6
TIO_PORT,R8
1,R9
bufend, R10
0[R6],R7
R7,0[R8]
R9,R6
R10,R6
loop

main
CODE

Notice the use of the LOCAL directive to make the label 1oop local to the macro;
otherwise an error is generated if the macro is used twice, as the 1oop label already

exists.

To use inline code the main program is then simply altered to:

doplay play

Assembler directives ___¢

Using REPTC and REPTI

This example assembles a series of calls to a subroutine plot to plot each character in
a string:

name reptcl

extern plotc

v define 018h
banner reptc chr, "Welcome"
mov 'chr',R6
st.w R6,V[RO]
jarl plotc,R7
endr
end

This produces this code:

1 00000000 NAME reptcl

2 00000000

3 00000000 EXTERN plotc

4 00000018 v DEFINE 018h

5 00000000 banner REPTC chr, "Welcome"
6 00000000 MOV ‘chr',R6
7 00000000 ST.W R6,V[RO]
8 00000000 JARL plotc,R7
9 00000000 ENDR

9.1 00000000 36200057 MOV 'W',R6
9.2 00000004 37600019 ST.W R6,VI[RO]
9.3 00000008 JARL plotc,R7
9.4 0000000C 36200065 MOV ‘e',R6
9.5 00000010 37600019 ST.W R6,VI[RO]
9.6 00000014 JARL plotc,R7
9.7 00000018 3620006C MOV '1',R6
9.8 0000001C 37600019 ST.W R6,VI[RO]
9.9 00000020 JARL plotc,R7
9.10 00000024 36200063 MOV ‘c',R6
9.11 00000028 37600019 ST.W R6,VI[RO]
9.12 0000002C JARL plotc,R7
9.13 00000030 3620006F MOV 'o',R6
9.14 00000034 37600019 ST.W R6,V[RO]
9.15 00000038 JARL plotc,R7
9.16 0000003C 3620006D MOV 'm',R6
9.17 00000040 37600019 ST.W R6,VI[RO]
9.18 00000044 JARL plotc,R7
9.19 00000048 36200065 MOV 'e',R6
9.20 0000004C 37600019 ST.W R6,V[RO]
9.21 00000050 JARL plotc,R7

83

Macro processing directives

10 00000054
11 00000054 END

This example uses REPTT to clear several memory locations:

name repti
extern base, count, init
rseg CODE : CODE
banner repti adds, base, count, init
mov adds, R6
st.w RO, 0[R6]
endr
end

This produces this code:

1 00000000 name repti
2 00000000
3 00000000 extern base,count,init
4 00000000 rseg CODE : CODE
5 00000000
6 00000000 banner repti adds, base, count, init
7 00000000 mov adds, R6
8 00000000 st.w RO,0[R6]
9 00000000 endr
9.1 00000000 3640 mov base,R6
3626
9.2 00000008 0766 0001 st.w RO, 0[R6]
9.3 0000000C 3640 mov count, R6
3626
9.4 00000014 0766 0001 st.w RO, 0[R6]
9.5 00000018 3640 mov init,R6
3626
9.6 00000020 0766 0001 st.w RO,0[R6]
10 00000024
11 00000024 end

IAR Assembler
84 Reference Guide for V850

Assembler directives ___¢

Listing control directives

These directives provide control over the assembler list file.

Directive Description

COL Sets the number of columns per page.
LSTCND Controls conditional assembly listing.
LSTCOD Controls multi-line code listing.

LSTEXP Controls the listing of macro-generated lines.
LSTMAC Controls the listing of macro definitions.
LSTOUT Controls assembly-listing output.

LSTPAG Controls the formatting of output into pages.
LSTREP Controls the listing of lines generated by repeat directives.
LSTXRF Generates a cross-reference table.

PAGE Generates a new page.

PAGSIZ Sets the number of lines per page.

Table 26: Listing control directives

SYNTAX

COL columns
LSTCND{+ |-}
LSTCOD{+|-}
LSTEXP{+|-}
LSTMAC{+|-}
LSTOUT{+ |-}
LSTPAG{+|-}
LSTREP{+|-}
LSTXRF{+|-}
PAGE
PAGESIZ lines

PARAMETERS
columns An absolute expression in the range 80 to 132, default is 80
lines An absolute expression in the range 10 to 150, default is 44

85

Listing control directives

86

IAR Assembler
Reference Guide for V850

DESCRIPTIONS

Turning the listing on or off

Use LsTOUT- to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LsTouT+, which lists the output (if a list file was specified).

Listing conditional code and strings

Use LsTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional IF statements.

The default setting is LSTCND-, which lists all source lines.

Use LSTCOD- to restrict the listing of output code to just the first line of code for a source
line.

The default setting is LSTCOD+, which lists more than one line of code for a source line,
if needed; that is, long ASCII strings produce several lines of output. Code generation
is not affected.

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.
Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.

Specifying the list file format

Use COL to set the number of columns per page of the assembler list. The default number
of columns is 80. Using 0 as a parameter will disable wrapping of lines.

Assembler directives ___¢

Use PAGSIZ to set the number of printed lines per page of the assembler list. The default
number of lines per page is 44.

Use LsTPAG+ to format the assembler output list into pages.
The default is LSTPAG-, which gives a continuous listing.

Use PAGE to generate a new page in the assembler list file if paging is active.
EXAMPLES

Turning the listing on or off

To disable the listing of a debugged section of program:

lstout-

; This section has already been debugged.
lstout+

; This section is currently being debugged.
end

Listing conditional code and strings

This example shows how LsTCND+ hides a call to a subroutine that is disabled by an IF
directive:

name lstcndTest
extern print
rseg FLASH:CODE
debug set 0
if debug
jarl print,R10
endif
lstcnd+
begin2 if debug
jarl print,R10
endif
end

This generates the following listing:

1 00000000 name lstcndTest
2 00000000 extern print

3 00000000 rseg FLASH:CODE
4 00000000

5 00000000 debug set 0

6 00000000 if debug

87

Listing control directives

IAR Assembler
88 Reference Guide for V850

7 00000000
8 00000000
9 00000000
10 00000000
11 00000000
13 00000000
14 00000000
15 00000000

begin2

This example shows the effect of LsTCOD- on the code generated by a db directive:

name lstcodTest
tablel db 1, 2, 3, 4,
lstcod-
table2 db 1, 2, 3, 4,
end

This generates the following listing:

9 00000000
10 00000000 0201 0403 tablel

0605
11 00000006
12 00000006
13 00000006 0201 0403*table2

14 0000000C
15 0000000C

jarl print,R10
endif

lstcnd+
if debug

endif

end

5, 6

name lstcodTest
db 1, 2, 3, 4,

lstcod-
db 1, 2, 3, 4,

end

Controlling the listing of macros

This example shows the effect of LSTMAC and LSTEXP:

store macro reg,pos
st.w reg, pos [RO]
endmac
lstmac-

fetch macro pos, reg
1d.w pos[RO], reg
endmac
extern buffer

begin store R6,buffer
lstexp-
fetch buffer,R6
end begin

Assembler directives ___¢

This produces the following output:

Uk w N

el

11
11.1
11.2
12
13
14
15

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000004
00000004
00000004
00000004
00000008

store MACRO reg,pos
ST.W reg,pos[RO]
ENDMAC
LSTMAC-
EXTERN buffer
begin store R6,buffer
3760. ... ST.W R6,buffer[RO]
ENDMAC
LSTEXP-
fetch buffer,R6
END begin

C-style preprocessor directives

These C-language preprocessor directives are available:

Directive

Description

#define
#elif
#else
#endif
#error
#if
#ifdef
#ifndef
#include
#line
#message
#pragma

#undef

Assigns a value to a preprocessor symbol.

Introduces a new condition inan #if. . .#endif block.
Assembles instructions if a condition is false.

Ends an #if, #ifdef, or #ifndef block.

Generates an error.

Assembles instructions if a condition is true.

Assembles instructions if a preprocessor symbol is defined.
Assembles instructions if a preprocessor symbol is undefined.
Includes a file.

Changes the source references in the debug information.
Generates a message on standard output.

This directive is recognized but ignored.

Undefines a preprocessor symbol.

Table 27: C-style preprocessor directives

SYNTAX

#define symbol text

#elif condition

89

C-style preprocessor directives

IAR Assembler

90 Reference Guide for V850

#else

#endif

#error "message"

#if condition

#ifdef symbol

#ifndef symbol

#include {"filename" | <filename>}
#line line-no {"filename"}
#message "message"

#undef symbol

PARAMETERS
condition An absolute expression The expression must not
contain any assembler labels or
symbols, and any non-zero
value is considered as true.
filename Name of file to be included or
referred.
line-no Source line number.
message Text to be displayed.
symbol Preprocessor symbol to be defined,
undefined, or tested.
text Value to be assigned.
DESCRIPTIONS

You must not mix assembler language and C-style preprocessor directives.
Conceptually, they are different languages and mixing them might lead to unexpected
behavior because an assembler directive is not necessarily accepted as a part of the C
preprocessor language.

Note that the preprocessor directives are processed before other directives. As an
example avoid constructs like:

redef macro ; Avoid the following!
#define \1 \2
endm

because the \1 and \2 macro arguments are not available during the preprocessing
phase.

Assembler directives ___¢

Defining and undefining preprocessor symbols
Use #define to define a value of a preprocessor symbol.
#define symbol value

Use #undef to undefine a symbol; the effect is as if it had not been defined.

Conditional preprocessor directives

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #1 £ directive is not true, the subsequent instructions
will not generate any code (that is, it will not be assembled or syntax checked) until an
#endif or #else directive is found.

All assembler directives (except for END) and file inclusion can be disabled by the
conditional directives. Each #i £ directive must be terminated by an #endi £ directive.
The #else directive is optional and, if used, it must be inside an #if...#endif block.

#if..#endif and #if...#else..#endif blocks can be nested to any level.

Use #ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #1 fndef to assemble instructions up to the next #else or #endif directive only if
a symbol is undefined.

Including source files

Use #include to insert the contents of a file into the source file at a specified point.
#include " filename" searches these directories in the specified order:

1 The source file directory.

2 The directories specified by the -1 option, or options.

3 The current directory.

#include <filename> searches these directories in the specified order:

1 The directories specified by the - option, or options.

2 The current directory.

Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

91

C-style preprocessor directives

92

IAR Assembler
Reference Guide for V850

Ignoring #pragma

A #pragma line is ignored by the assembler, making it easier to have header files
common to C and assembler.

Comments in C-style preprocessor directives

If you make a comment within a define statement, use:

o the C comment delimiters /* ... */tocomment sections

o the C++ comment delimiter // to mark the rest of the line as comment.

Do not use assembler comments within a define statement as it leads to unexpected
behavior.

This expression evaluates to 3 because the comment character is preserved by #define:

#define x 3 ; This is a misplaced comment.

module misplacedCommentl
expression equ X * 8 + 5

end

This example illustrates some problems that might occur when assembler comments are
used in the C-style preprocessor:

#define five 5 ; This comment is not OK.

#define six 6 // This comment is OK.

#define seven 7 /* This comment is OK. */
DC32 five, 11, 12

; The previous line expands to:

; "DC32 5 ; This comment is not OK., 11, 12"
DC32 six + seven, 11, 12

; The previous line expands to:

; "DC32 6 + 7, 11, 12"
end

Changing the source line numbers

Use the #1ine directive to change the souce line numbers and the souce filename used
in the debug information. #1ine operates on the lines following the #1ine directive.

Assembler directives ___¢

EXAMPLES

Using conditional preprocessor directives

This example defines a label adjust, and then uses the conditional directive #ifdef to
use the value if it is defined. If it is not defined, #error displays an error:

name ifdef
extern input,output
#define adjust 10
main 1d.w input [RO],R6
#ifdef adjust
mov adjust,R7
add R7,R6
#else
#error "'adjust' not defined"
#endif

#undef adjust

st.w

end

R6, input

Including a source file

This example uses #include to include a file defining macros into the source file. For
example, these macros could be defined in Macros. inc:

xch macro a,b
XOor a,b
xXor b,a
hidela a,b
endmac

The macro definitions can then be included, using #include, as in this example:

name

LSTWID+

include

; Standard macro definitions

#include "Macros.inc"

; Program

main xch R6,R7
end main

93

Data definition or allocation directives

94

Data definition or allocation directives

IAR Assembler
Reference Guide for V850

These directives define values or reserve memory. The column A4/ias in the following
table shows the Renesas directive that corresponds to the IAR Systems directive. See
Expression restrictions, page 24, for a description of the restrictions that apply when
using a directive in an expression.

Directive Alias Description

DC8 DB Generates 8-bit constants, including strings.
DC16 DH Generates |6-bit half word constants.
DC32 DW Generates 32-bit word constants.

DS8 DS Allocates space for 8-bit integers.

DS16 Allocates space for |6-bit integers.

DS32 Allocates space for 32-bit integers.

Table 28: Data definition or allocation directives

SYNTAX

DB expr [,expr]
DC8 expr [,expr]
DC1l6 expr [,expr]
DC32 expr [,expr]
DH expr [,expr]
DS count

DS8 count

DS16 count

DS32 count

DW expr [,expr]

PARAMETERS

count A valid absolute expression specifying the number of elements to be
reserved.

expr A valid absolute, relocatable, or external expression, or an ASCII string.

ASCII strings are zero filled to a multiple of the data size implied by the
directive. Double-quoted strings are zero-terminated.”

DESCRIPTIONS

Use DC8, DC16, or DC32 to create a constant, which means an area of bytes is reserved
big enough for the constant.

Assembler directives ___¢

Use DS, DS8, DS16, or DS32 to reserve a number of uninitialized bytes.
EXAMPLES

Generating a lookup table

This example generates a lookup table of addresses to routines:

name table
Vo define 01ah
v1i define VO0+4
table dw addsubr, subsubr, clrsubr
addsubr 1d.w VO[RO],R6
1d.w V1[RO],R7
add R6,R7
st.w R7,V1[RO]
Jjmp [R8]
subsubr 1d.w VO[RO],R6
1d.w V1[RO],R7
sub R6,R7
st.w R7,V1[RO]
Jjmp [R8]
clrsubr mov 0,R6
st.w R6,VO[RO]
jmp [R8]
end

Defining strings

To define a string:

myMsg DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errMsg DC8 'Don''t understand!'

Reserving space
To reserve space for 10 bytes:

table DS8 10

95

Assembler control directives

Assembler control directives

These directives provide control over the operation of the assembler. See Expression
restrictions, page 24, for a description of the restrictions that apply when using a
directive in an expression.

Directive Description Expression restrictions

S Includes a file.

/*comment*/ C-style comment delimiter.

// C++style comment delimiter.

CASEOFF Disables case sensitivity.

CASEON Enables case sensitivity.

RADIX Sets the default base on all numeric No forward references

values. No external references

Absolute
Fixed

Table 29: Assembler control directives

SYNTAX

$filename
/* comment*/
// comment
CASEOFF
CASEON
RADIX expr

PARAMETERS

comment Comment ignored by the assembler.

expr Default base; default 10 (decimal).

filename Name of file to be included. The ¢ character must be the first
character on the line.

DESCRIPTIONS

Use $ to insert the contents of a file into the source file at a specified point.
Use /*...*/ to comment sections of the assembler listing.

Use // to mark the rest of the line as comment.

IAR Assembler
96 Reference Guide for V850

Assembler directives ___¢

Use RADIX to set the default base for constants. The default base is 10.

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default, case sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by
XLINK should be written in upper case in the XLINK definition file.
EXAMPLES

Including a source file

This example uses $ to include a file defining macros into the source file. For example,
these macros could be defined in Macros. inc:

xch macro a
XOor a
XOr b,
XOor a
endmac

The macro definitions can be included with a $ directive, as in:

NAME include
; standard macro definitions

Smacros.s85

; program
main xch R6,R7
END main

Defining comments
This example shows how /*. . .*/ can be used for a multi-line comment:

/*

Program to read serial input.
Version 2: 19.9.2000

Author: mjp

*/

See also, Comments in C-style preprocessor directives, page 92.

97

Function directives

98

Changing the base
To set the default base to 16:

radix 16D
mov 12,R16

The immediate argument will then be interpreted as H' 12.

Controlling case sensitivity
When CASEOFF is set, label and LABEL are identical in this example:

label nop ; Stored as "LABEL".
jr LABEL

The following will generate a duplicate label error:

label nop ; Stored as "LABEL".
LABEL nop ; Error, "LABEL" already defined.
end

Function directives

IAR Assembler
Reference Guide for V850

The function directives are generated by the IAR C/C++ Compiler for V850 to pass
information about functions and function calls to the IAR XLINK Linker. These
directives can be seen if you create an assembler list file by using the compiler option
Output assembler file>Include compiler runtime information (-12).

Note: These directives are primarily intended to support static overlay, a feature which
is useful in smaller microcontrollers. The IAR C/C++ Compiler for V850 does not use
static overlay, as it has no use for it.

SYNTAX

ARGFRAME segment, size, type
FUNCALL caller, callee
FUNCTION label,value

LOCFRAME segment, size, type

PARAMETERS

callee The called function.

caller The caller to a function.

label A label to be declared as function.

Assembler directives ___¢

segment The segment in which argument frame or local frame is to be stored.
size The size of the argument frame or the local frame.

type The type of argument or local frame; either STACK or STATIC.
value Function information.

DESCRIPTIONS

FUNCTION declares the 1abel name to be a function. value encodes extra information
about the function.

FUNCALL declares that the function caller calls the function callee. callee can be
omitted to indicate an indirect function call.

ARGFRAME and LOCFRAME declare how much space the frame of the function uses in
different memories. ARGFRAME declares the space used for the arguments to the
function, LOCFRAME the space for locals. segment is the segment in which the space
resides. size is the number of bytes used. type is either STACK or STATIC, for
stack-based allocation and static overlay allocation, respectively.

ARGFRAME and LOCFRAME always occur immediately after a FUNCTION or FUNCALL
directive.

After a FUNCTION directive for an external function, there can only be ARGFRAME
directives, which indicate the maximum argument frame usage of any call to that
function. After a FUNCTION directive for a defined function, there can be both
ARGFRAME and LOCFRAME directives.

After a FUNCALL directive, there will first be LOCFRAME directives declaring frame
usage in the calling function at the point of call, and then ARGFRAME directives
declaring argument frame usage of the called function.

Call frame information directives

These directives allow backtrace information to be defined in the assembler source code.
The benefit is that you can view the call frame stack when you debug your assembler

code.

Directive Description

CFI BASEADDRESS Declares a base address CFA (Canonical Frame Address).
CFI BLOCK Starts a data block.

CFI CODEALIGN Declares code alighment.

CFI COMMON Starts or extends a common block.

Table 30: Call frame information directives

929

Call frame information directives

100

IAR Assembler

Reference Guide for V850

Directive Description

CFI CONDITIONAL Declares data block to be a conditional thread.
CFI DATAALIGN Declares data alignment.

CFI ENDBLOCK Ends a data block.

CFI ENDCOMMON Ends a common block.

CFI ENDNAMES Ends a names block.

CFI FRAMECELL Creates a reference into the caller’s frame.
CFI FUNCTION Declares a function associated with data block.
CFI INVALID Starts range of invalid backtrace information.
CFI NAMES Starts a names block.

CFI NOFUNCTION Declares data block to not be associated with a function.
CFI PICKER Declares data block to be a picker thread.
CFI REMEMBERSTATE Remembers the backtrace information state.
CFI RESOURCE Declares a resource.

CFI RESOURCEPARTS Declares a composite resource.

CFI RESTORESTATE Restores the saved backtrace information state.
CFI RETURNADDRESS Declares a return address column.

CFI STACKFRAME Declares a stack frame CFA.

CFI STATICOVERLAYFRAME Declares a static overlay frame CFA.

CFI VALID Ends range of invalid backtrace information.
CFI VIRTUALRESOURCE Declares a virtual resource.

CFI cfa Declares the value of a CFA.

CFI resource Declares the value of a resource.

Table 30: Call frame information directives (Continued)

SYNTAX

The syntax definitions below show the syntax of each directive. The directives are

grouped according to usage.

Names block directives

CFI
CFI
CFI
CFI
CFI

NAMES name
ENDNAMES name

RESOURCE resource

bits [, resource : bits]

VIRTUALRESOURCE resource : bits [, resource : bits]

RESOURCEPARTS resource part, part [, part] ...

Assembler directives ___¢

CFI STACKFRAME cfa resource type [, cfa resource type]
CFI STATICOVERLAYFRAME cfa segment [, cfa segment]
CFI BASEADDRESS cfa type [, cfa typel

Extended names block directives

CFI NAMES name EXTENDS namesblock
CFI ENDNAMES name

CFI FRAMECELL cell cfa(offset): size [, cell cfa (offset): size]

Common block directives

CFI COMMON name USING namesblock

CFI ENDCOMMON name

CFI CODEALIGN codealignfactor

CFI DATAALIGN dataalignfactor

CFI RETURNADDRESS resource type

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }
CFI cfa cfiexpr

CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

CFI resource cfiexpr

Extended common block directives

CFI COMMON name EXTENDS commonblock USING namesblock
CFI ENDCOMMON name

Data block directives

CFI BLOCK name USING commonblock

CFI ENDBLOCK name

CFI { NOFUNCTION | FUNCTION label }

CFI { INVALID | VALID }

CFI { REMEMBERSTATE | RESTORESTATE }

CFI PICKER

CFI CONDITIONAL label [, labell]

CFI cfa { resource | resource + constant | resource - constant }
CFI cfa cfiexpr

CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

101

Call frame information directives

CFI resource { resource | FRAME (cfa, offset) }

CFI resource cfiexpr

PARAMETERS
bits

cell

cfa

cfiexpr

codealignfactor

commonblock

constant

dataalignfactor

label

name
namesblock
offset

part

resource
segment
size

type

IAR Assembler
102 Reference Guide for V850

The size of the resource in bits.

The name of a frame cell.

The name of a CFA (canonical frame address).

A CFI expression (see CFI expressions, page 108).

The smallest factor of all instruction sizes. Each CFI directive for
a data block must be placed according to this alignment. 1 is the
default and can always be used, but a larger value shrinks the
produced backtrace information in size. The possible range is
1-256.

The name of a previously defined common block.

A constant value or an assembler expression that can be evaluated
to a constant value.

The smallest factor of all frame sizes. If the stack grows toward
higher addresses, the factor is negative; if it grows toward lower
addresses, the factor is positive. 1 is the default, but a larger value
shrinks the produced backtrace information in size. The possible
ranges are -256 to -1 and 1 to 256.

A function label.

The name of the block.

The name of a previously defined names block.

The offset relative the CFA. An integer with an optional sign.

A part of a composite resource. The name of a previously
declared resource.

The name of a resource.
The name of a segment.
The size of the frame cell in bytes.

The memory type, such as CODE, CONST or DATA. In addition, any
of the memory types supported by the IAR XLINK Linker. It is
used solely for the purpose of denoting an address space.

Assembler directives ___¢

DESCRIPTIONS

The call frame information directives (CFI directives) are an extension to the debugging
format of the IAR C-SPY® Debugger. The CFI directives are used for defining the
backtrace information for the instructions in a program. The compiler normally
generates this information, but for library functions and other code written purely in
assembler language, backtrace information must be added if you want to use the call
frame stack in the debugger.

The backtrace information is used to keep track of the contents of resources, such as
registers or memory cells, in the assembler code. This information is used by the IAR
C-SPY Debugger to go “back™ in the call stack and show the correct values of registers
or other resources before entering the function. In contrast with traditional approaches,
this permits the debugger to run at full speed until it reaches a breakpoint, stop at the
breakpoint, and retrieve backtrace information at that point in the program. The
information can then be used to compute the contents of the resources in any of the
calling functions—assuming they have call frame information as well.

Backtrace rows and columns

At each location in the program where it is possible for the debugger to break execution,
there is a backtrace row. Each backtrace row consists of a set of columns, where each
column represents an item that should be tracked. There are three kinds of columns:

o The resource columns keep track of where the original value of a resource can be
found.

o The canonical frame address columns (CFA columns) keep track of the top of the
function frames.

o The return address column keeps track of the location of the return address.

There is always exactly one return address column and usually only one CFA column,
although there might be more than one.

Defining a names block

A names block is used to declare the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

where name is the name of the block.

Only one names block can be open at a time.

103

Call frame information directives

Inside a names block, four different kinds of declarations can appear: a resource
declaration, a stack frame declaration, a static overlay frame declaration, or a base
address declaration:

o To declare a resource, use one of the directives:

CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. A
virtual resource is a logical concept, in contrast to a “physical” resource such as a
processor register. Virtual resources are usually used for the return address.

To declare more than one resource, separate them with commas.

A resource can also be a composite resource, made up of at least two parts. To declare
the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part,

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.

o To declare a stack frame CFA, use the directive:
CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the segment type (to get the address space). To
declare more than one stack frame CFA, separate them with commas.

When going “back” in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

o To declare a static overlay frame CFA, use the directive:
CFI STATICOVERLAYFRAME cfa segment

The parameters are the name of the CFA and the name of the segment where the static
overlay for the function is located. To declare more than one static overlay frame
CFA, separate them with commas.

o To declare a base address CFA, use the directive:
CFI BASEADDRESS cfa type

The parameters are the name of the CFA and the segment type. To declare more than
one base address CFA, separate them with commas.

A base address CFA is used to conveniently handle a CFA. In contrast to the stack
frame CFA, there is no associated stack pointer resource to restore.
Extending a names block

In some special cases you must extend an existing names block with new resources. This
occurs whenever there are routines that manipulate call frames other than their own,

IAR Assembler
104 Reference Guide for V850

Assembler directives ___¢

such as routines for handling, entering, and leaving C or C++ functions; these routines
manipulate the caller’s frame. Extended names blocks are normally used only by
compiler developers.

Extend an existing names block with the directive:
CFI NAMES name EXTENDS namesblock

where namesblock is the name of the existing names block and name is the name of
the new extended block. The extended block must end with the directive:

CFI ENDNAMES name

Defining a common block

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

Start a common block with the directive:
CFI COMMON name USING namesblock

where name is the name of the new block and namesblock is the name of a previously
defined names block.

Declare the return address column with the directive:
CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the segment type.
You must declare the return address column for the common block.

End a common block with the directive:
CFI ENDCOMMON name
where name is the name used to start the common block.

Inside a common block, you can declare the initial value of a CFA or a resource by using
the directives listed last in Common block directives, page 101. For more information on
these directives, see Simple rules, page 106, and CFI expressions, page 108.

Extending a common block

Since you can extend a names block with new resources, it is necessary to have a
mechanism for describing the initial values of these new resources. For this reason, it is
also possible to extend common blocks, effectively declaring the initial values of the
extra resources while including the declarations of another common block. Just as in the
case of extended names blocks, extended common blocks are normally only used by
compiler developers.

105

Call frame information directives

106

IAR Assembler
Reference Guide for V850

Extend an existing common block with the directive:
CFI COMMON name EXTENDS commonblock USING namesblock

where name is the name of the new extended block, commonblock is the name of the
existing common block, and namesblock is the name of a previously defined names
block. The extended block must end with the directive:

CFI ENDCOMMON name

Defining a data block

The data block contains the actual tracking information for one continuous piece of
code. No segment control directive can appear inside a data block.

Start a data block with the directive:
CFI BLOCK name USING commonblock

where name is the name of the new block and commonblockis the name of a previously
defined common block.

If the piece of code is part of a defined function, specify the name of the function with
the directive:

CFI FUNCTION label

where l1abel is the code label starting the function.

If the piece of code is not part of a function, specify this with the directive:
CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

Inside a data block, you can manipulate the values of the columns by using the directives
listed last in Data block directives, page 101. For more information on these directives,
see Simple rules, page 106, and CFI expressions, page 108.

SIMPLE RULES

To describe the tracking information for individual columns, there is a set of simple rules
with specialized syntax:

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

Assembler directives ___¢

You can use these simple rules both in common blocks to describe the initial information
for resources and CFAs, and inside data blocks to describe changes to the information
for resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, you
can use a full CFI expression to describe the information (see CF/ expressions, page
108). However, whenever possible, you should always use a simple rule instead of a CFI
expression.

There are two different sets of simple rules: one for resources and one for CFAs.

Simple rules for resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the location of the resource.

To declare that a tracked resource is restored, that is, already correctly located, use
SAMEVALUE as the location. Conceptually, this declares that the resource does not have
to be restored since it already contains the correct value. For example, to declare that a
register REG is restored to the same value, use the directive:

CFI REG SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
since itis not tracked. Usually it is only meaningful to use it to declare the initial location
of aresource. For example, to declare that REG is a scratch register and does not have to
be restored, use the directive:

CFI REG UNDEFINED

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register REG1 is temporarily located
in a register REG2 (and should be restored from that register), use the directive:

CFI REGl REG2

To declare that a resource is currently located somewhere on the stack, use FRAME (cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and of £set is an offset relative the CFA. For example, to declare that a register
REG is located at offset -4 counting from the frame pointer CFA_SP, use the directive:

CFI REG FRAME (CFA_SP,-4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource

107

Call frame information directives

108

IAR Assembler
Reference Guide for V850

parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

Simple rules for CFAs

In contrast with the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by
the subroutine calling instruction. The CFA rules describe how to compute the address
to the beginning of the current call frame. There are two different forms of CFAs, stack
frames and static overlay frames, each declared in the associated names block. See
Names block directives, page 100.

Each stack frame CFA is associated with a resource, such as the stack pointer. When
going back one call frame the associated resource is restored to the current CFA. For
stack frame CFAs there are two possible simple rules: an offset from a resource (not
necessarily the resource associated with the stack frame CFA) or NOTUSED.

To declare that a CFA is not used, and that the associated resource should be tracked as
a normal resource, use NOTUSED as the address of the CFA. For example, to declare that
the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the resource and the offset. For example, to declare that the CFA with the name CFA_sp
can be obtained by adding 4 to the value of the Sp resource, use the directive:

CFI CFA_SP SP + 4

For static overlay frame CFAs, there are only two possible declarations inside common
and data blocks: USED and NOTUSED.

CFI EXPRESSIONS

You can use call frame information expressions (CFI expressions) when the descriptive
power of the simple rules for resources and CFAs is not enough. However, you should
always use a simple rule when one is available.

CFI expressions consist of operands and operators. Only the operators described below
are allowed in a CFI expression. In most cases, they have an equivalent operator in the
regular assembler expressions.

Assembler directives ___¢

In the operand descriptions, cfiexpr denotes one of these:

o A CFI operator with operands

® A numeric constant
o A CFA name

@ A resource name.

Unary operators

Overall syntax: OPERATOR (operand)

Operator Operand Description

COMPLEMENT cfiexpr Performs a bitwise NOT on a CFl expression.

LITERAL expr Get the value of the assembler expression. This can insert
the value of a regular assembler expression into a CFl
expression.

NOT cfiexpr Negates a logical CFl expression.

UMINUS cfiexpr Performs arithmetic negation on a CFl expression.

Table 31: Unary operators in CFI expressions

Binary operators

Overall syntax: OPERATOR (operandl, operand2)

Operator Operands Description

ADD cfiexpr,cfiexpr Addition

AND cfiexpr,cfiexpr Bitwise AND

DIV cfiexpr,cfiexpr Division

EQ cfiexpr,cfiexpr Equal

GE cfiexpr,cfiexpr Greater than or equal

GT cfiexpr,cfiexpr Greater than

LE cfiexpr,cfiexpr Less than or equal

LSHIFT cfiexpr,cfiexpr Logical shift left of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

LT cfiexpr,cfiexpr Less than

MOD cfiexpr,cfiexpr Modulo

MUL cfiexpr,cfiexpr Multiplication

Table 32: Binary operators in CFI expressions

109

Call frame information directives

110

IAR Assembler
Reference Guide for V850

Operator Operands Description

NE cfiexpr,cfiexpr Not equal

OR cfiexpr,cfiexpr Bitwise OR

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The number
of bits to shift is specified by the right operand. In
contrast with RSHIFTL the sign bit is preserved when
shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

SUB cfiexpr,cfiexpr Subtraction

XOR cfiexpr,cfiexpr Bitwise XOR

Table 32: Binary operators in CFI expressions (Continued)

Assembler directives ___¢

Ternary operators
Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands Description

FRAME cfa,size,offset Gets the value from a stack frame. The operands are:
cfa An identifier denoting a previously declared CFA.
size A constant expression denoting a size in bytes.
offset A constant expression denoting an offset in
bytes.
Gets the value at address cfa+offset of size size.

IF cond, true, false Conditional operator. The operands are:
cond A CFA expression denoting a condition.
true Any CFA expression.
false Any CFA expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

LOAD size, type,addr Gets the value from memory. The operands are:
size A constant expression denoting a size in bytes.
type A memory type.
addr A CFA expression denoting a memory address.
Gets the value at address addr in segment type type of
size size.

Table 33: Ternary operators in CFI expressions

EXAMPLE

The following is a generic example and not an example specific to the V850
microcontroller. This simplifies the example and clarifies the usage of the CFI
directives. To obtain a target-specific example, generate assembler output when you
compile a C source file.

Consider a generic processor with a stack pointer Sp, and two registers R0 and R1.
Register RO is used as a scratch register (the register is destroyed by the function call),
whereas register R1 must be restored after the function call. For reasons of simplicity,
all instructions, registers, and addresses have a width of 16 bits.

Consider the following short code sample with the corresponding backtrace rows and
columns. At entry, assume that the stack contains a 16-bit return address. The stack

Call frame information directives

grows from high addresses toward zero. The CFA denotes the top of the call frame, that
is, the value of the stack pointer after returning from the function.

Address CFA SP RO RI RET Assembler code

0000 SP+2 — SAME CFA -2 funcl: PUSH R1
0002 SP + 4 CFA -4 MOV R1,#4
0004 CALL func2
0006 POP RO
0008 SP+2 RO MOV R1,RO
000A SAME RET

Table 34: Code sample with backtrace rows and columns

Each backtrace row describes the state of the tracked resources before the execution of
the instruction. As an example, for the MOV R1, RO instruction the original value of the
R1 register is located in the RO register and the top of the function frame (the CFA
column) is sSP + 2. The backtrace row at address 0000 is the initial row and the result
of the calling convention used for the function.

The SP column is empty since the CFA is defined in terms of the stack pointer. The RET
column is the return address column—that is, the location of the return address. The RO
column has a ‘—’ in the first line to indicate that the value of RO is undefined and does
not need to be restored on exit from the function. The R1 column has SAME in the initial
row to indicate that the value of the R1 register will be restored to the same value it
already has.

Defining the names block
The names block for the small example above would be:

CFI NAMES trivialNames
CFI RESOURCE SP:16, R0:16, R1:16
CFI STACKFRAME CFA SP DATA

;7 The virtual resource for the return address column
CFI VIRTUALRESOURCE RET:16
CFI ENDNAMES trivialNames

Defining the common block
The common block for the simple example above would be:

CFI COMMON trivialCommon USING trivialNames
CFI RETURNADDRESS RET DATA

CFI CFA SP + 2

CFI RO UNDEFINED

CFI R1 SAMEVALUE

IAR Assembler
112 Reference Guide for V850

Assembler directives ___¢

CFI RET FRAME (CFA,-2) ; Offset -2 from top of frame
CFI ENDCOMMON trivialCommon

Note: sp cannot be changed using a CFI directive since it is the resource associated with
CFA.

Defining the data block

Continuing the simple example, the data block would be:

RSEG CODE: CODE

CFI BLOCK funclblock USING trivialCommon

CFI FUNCTION funcl
funcl:

PUSH R1

CFI CFA SP + 4

CFI R1 FRAME (CFA, -4)

MOV R1, #4

CALL func?2

POP RO

CFI R1 RO

CFI CFA SP + 2

MOV R1,RO

CFI R1 SAMEVALUE

RET

CFI ENDBLOCK funclblock

Note that the CFI directives are placed after the instruction that affects the backtrace
information.

113

Call frame information directives

IAR Assembler
114 Reference Guide for V850

Assembler diagnostics

This chapter describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

Message format

All diagnostic messages are displayed on the screen, and printed in the optional list file.

All messages are issued as complete, self-explanatory messages. The message consists
of the incorrect source line, with a pointer to where the problem was detected, followed
by the source line number and the diagnostic message. If include files are used, error
messages are preceded by the source line number and the name of the current file:

"subfile.h",4 Error[40]: bad instruction

Severity levels

The diagnostic messages produced by the IAR Assembler for V850 reflect problems or
errors that are found in the source code or occur at assembly time.

OPTIONS FOR DIAGNOSTICS

There are two assembler options for diagnostics. You can:

e Disable or enable all warnings, ranges of warnings, or individual warnings, see -w,
page 37

o Set the number of maximum errors before the compilation stops, see -E, page 31.

ASSEMBLY WARNING MESSAGES

Assembly warning messages are produced when the assembler finds a construct which
is probably the result of a programming error or omission.

COMMAND LINE ERROR MESSAGES

Command line errors occur when the assembler is invoked with incorrect parameters.
The most common situation is when a file cannot be opened, or with duplicate,
misspelled, or missing command line options.

115

Severity levels

116

IAR Assembler
Reference Guide for V850

ASSEMBLY ERROR MESSAGES

Assembly error messages are produced when the assembler finds a construct which
violates the language rules.

ASSEMBLY FATAL ERROR MESSAGES

Assembly fatal error messages are produced when the assembler finds a user error so
severe that further processing is not considered meaningful. After the diagnostic
message is issued, the assembly is immediately ended. These error messages are
identified as Fatal in the error messages list.

ASSEMBLER INTERNAL ERROR MESSAGES

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the assembler.

During assembly, several internal consistency checks are performed and if any of these
checks fail, the assembler terminates after giving a short description of the problem.
Such errors should normally not occur. However, if you should encounter an error of this
type, it should be reported to your software distributor or to IAR Systems Technical
Support. Please include information enough to reproduce the problem. This would
typically include:

o The product name

e The version number of the assembler, which can be seen in the header of the list
files generated by the assembler

Your license number
The exact internal error message text

The source file of the program that generated the internal error

A list of the options that were used when the internal error occurred.

A

absolute eXPressionso vvv vt 23
absolute Segmentsot 67
ADD (CFLOperator)ovvveeeiennenennn. 109
addition (assembler operator), 44
address field, in assembler listfile 25
ALIAS (assembler directive) 70
ALIGN (assembler directive) 65
alignment, of segments, 68
ALIGNRAM (assembler directive). 65
AND (CFLoperator)ovveene e, 109
architecture, V850. 9
ARGFRAME (assembler directive) 98
_args (assembler directive) oL 77
_args (predefined macro symbol) 79
ASCII character constants.oveuenenn.. 19
ASEG (assembler directive) 65
ASEGN (assembler directive). 65
asm (filename extension) 15
ASMVS850 (environment variable) 16
assembler BLOCK (assembler directive) 62
assembler control directives 96
assembler diagnostics oL 115
assembler directives
assemblercontrol. 96
call frame information (CFI) 99
conditional assembly Lo 75
See also C-style preprocessor directives
C-style preprocessorc.ouveienenen... 89
data definition or allocation 94
function 98
listfilecontrol o .o... 85
MACTO PIOCESSING « . ¢ o v o v e et e e 77
modulecontrol. 59
segment Controlt 65
SUMIMATY '« e vt ettt et et et e e e e e e s 55
symbolcontrol i 62
value assignment 70

Index °

assembler environment variables 16
assembler eXpressions.t 18
assembler instructions. 17
assemblerlabels L 21
formatof 17
assembler list files
addressfield. L L L., 25
COMMENTS. . ..ottt ettt e e e e 96
conditional code and strings. 86
conditions, specifying 29
cross-references, generating. 38, 86
datafield il 25
disabling 86
enabling........ 86
filename, specifying. 33
format, specifying 86
generated lines, controlling 86
GENETALNG . . o\ttt et 32
header section, omitting. 34
#include files, specifying 32
lines per page, specifying. 35
macro execution information, including. 29
macro-generated lines, controlling. 86
symbol and cross-reference table. 25
tab spacing, specifying., 36
using directives to format. 86
assembler macros
arguments, passing to.o i 79
defining i 78
generated lines, controlling in listfile 86
in-line routines.oovninin i 81
predefined symbol 79
PrOCESSING . o v v vttt et e 80
quote characters, specifying. 33
special characters, using. 79
assembler object file, specifying filename. 34
assembler Operators 41
I EXPIESSIONS. .« o v v v vttt ettt et e e ee e 18
precedence.t 41

17

118

assembler options

passing toassembler 15
command line, setting 27
extended command file, setting 27
SUMMATY « o v vt vt ettt e e e e eene 28
assembler output, including debug information 35
assembler source files, including 91, 97
assembler source format 17
assembler subversionnumber. 22
assembler symbols i 20
EXPOTTING & o o vttt et e 63
IMPOTting . . .o ov et e 63-64
in relocatable expressions, 23
local. ..o 74
predefined i 21
undefining. i 36
redefining. 72
assembler, invocation syntax.o ... 15
assembling, Syntaxot 15
assembly error messages. v i 116
assembly messages format 115
assembly warning messages, 115
disabling 37
ASSIGN (assembler directive) 70
assumptions (programming experience) 9
__AVS850__ (predefined symbol) 22
AV850_INC (environment variable) 16
-B (assembleroption) 29
backtrace information, defining 99
bitwise AND (assembler operator) 45
bitwise exclusive OR (assembler operator)............. 46
bitwise NOT (assembler operator) 45
bitwise OR (assembler operator). 45
BLOCK (assembler directive). 62
bold style, inthisguide. 11
__BUILD_NUMBER___ (predefined symbol) 22
IAR Assembler

Reference Guide for V850

BYTEI (assembler operator) 46
BYTE2 (assembler operator) 46
BYTES3 (assembler operator) 46
BYTEA4 (assembler operator) 46
-c (assembler option)iiiiii 29
call frame information directives 99
case sensitive user symbols. 36
case sensitivity, controlling. 97
CASEOFF (assembler directive). 96
CASEON (assembler directive) 96
CELAIrectives . . . v oot et it 99
CFI eXPressionsovuve e eneennneanen.n. 108
CELOperatorsouuuueneneninenanennn. 109
character constants, ASCIL 19
COL (assembler directive)covunin... 85
command line error messages, assembler............. 115
command line options. i 27
part of invocation syntax, 15
PASSING . ottt 15
typographic conventionc...... 11
command line, extending 31,37
command prompt icon, in this guide. 11
comments
inassemblerlistfile............................ 96
in assembler soucecode. 17
multi-line, using with assembler directives 97
comments, in C-style preprocessor directives. 92
COMMON SEZMENLS .« . v vv ettt et ee e 67
COMMON (assembler directive) 65
COMPLEMENT (CFI operator).c........ 109
computer style, typographic convention 11
conditional assembly directives 75
See also C-style preprocessor directives
conditional code and strings, listing 86
conditional listfile 29

constants

defaultbaseof 97

INEEEET v v ettt et e e e 18
conventions, used inthisguide 10
copyrightnotice, 2
CRC, in assembler listfile 25
cross-references, in assembler listfile. 86

GENETALING .« .ottt 38
current time/date (assembler operator) 47
C-style preprocessor directivesoueenen... 89
CH+terminology.o v i 10
-D (assembleroption)c. ... 30
data allocation directives.ouviinenenn.. 94
data definition directives.ouiiiii. 94
data field, in assembler listfile 25
_ DATE__ (predefined symbol)..................... 22
DATE (assembler operator).c.oouun... 47
DB (assembler directive)., 94
DCS8 (assembler directive). 94
DC16 (assembler directive).ccvu.... 94
DC32 (assembler directive)., 94
debug information, including in assembler output 35
default base, for constants. 97
#define (assembler directive) 89
DEFINE (assembler directive) 70
DH (assembler directive)c.coui.... 94
diagnostic messages, options for. 115
diagnostics . ..o v i 115
directives. See assembler directives
disclaimer.t e 2
DIV (CFLOperator). vcvve e ee e eieieieenenn 109
division (assembler operator) 44
document CONVENtioNS. ovv v v en e eeennnnn 10
DS (assembler directive). 94
DS8 (assembler directive). 94
DS16 (assembler directive)., 94

Index °

DS32 (assembler directive). 94
DW (assembler directive), 94
-E (assembleroption), 31
edition, of thisguide i 2
efficient coding techniques 26
#elif (assembler directive). 89
#else (assembler directive), 89
ELSE (assembler directive). 75
ELSEIF (assembler directive).oovvn.... 75
END (assembler directive) 59
#endif (assembler directive) 89
ENDIF (assembler directive) 75
ENDM (assembler directive)ccovuu... 77
ENDMOD (assembler directive). 59
ENDR (assembler directive), 77
environment variables

ASMVSE50 . ..o 16

assembler. 16

AVES50_INC. ... o 16
EQ (CFLoperator).vvuve it e e eieeenn 109
EQU (assembler directive) 70
equal (assembler operator)c.coi... 47
#error (assembler directive) 89
error messages

format 115

maximum number, specifying 31

#error, using todisplay. L 91
EVEN (assembler directive)couvn... 65
EXITM (assembler directive)covvu.... 77
€XPerience, Programmingouueuneneennennen . 9
CXPIESSIONS &« o v v e ettt et et et 18
extended command linefile 27
extended command line file (extend.xcl). 31, 37
EXTERN (assembler directive) 62

19

120

F

F: (operand modifier) 71
-f (assembler option). 27,31
false value, in assembler expressions 20
fatal errors.o 116
__FILE__ (predefined symbol)...................... 22
file extensions. See filename extensions
file types
assembler source 15
extended command line................... 27,31, 37
#include, specifyingpath. 32
filename extensions
ASTNL &ttt e e 15
11T 15
S8 15
XCl o 27,31, 37
filenames, specifying for assembler object file 34-35
first byte (assembler operator) 46
floating-point constants.uiuenenn.. 19
formats, assembler sourcecode. 17
fourth byte (assembler operator) 46
--fpu (assembleroption) L L. 31
FRAME (CFl operator)., 111
FUNCALL (assembler directive) 98
function directives. i 98
FUNCTION (assembler directive) 98
-G (assembleroption) 31
GE (CFLoperator).cvve i 109
global value, defining 72
greater than or equal (assembler operator) 47
greater than (assembler operator) 48
GT (CFLoperator).vcvene i 109
IAR Assembler

Reference Guide for V850

H

header files, SFR. 26
header section, omitting from assembler list file. 34
high byte (assembler operator) 48
high half word (assembler operator) 48
high word (assembler operator) 49
HIGH (assembler operator).coouvunen.n. 48
HI1 (assembler operator)c.oouvuvunnn. 48
HWRD (assembler operator) 49
-I (assembler option).t 32
-i(assembleroption).l 32
_ IAR_SYSTEMS_ASM__ (predefined symbol) 22
icons,inthisguide 11
#if (assembler directive), 89
IF (assembler directive)o ivuonn.. 75
IF (CFLoperator).vvu it 111
#ifdef (assembler directive). 89
#ifndef (assembler directive). 89
IMPORT (assembler directive) 62
#includefiles. 32
#include files, specifying 32
#include (assembler directive) 89
include paths, specifying. 32
instruction set, V850. 9
INEEZETr CONSLANES . « . v v vttt et e ie e 18
internal errors, assembler 116
INVOCAtION SYNEAX « . vttt et e e e ie e 15
in-line coding, using Macros.c.c.o... 81
ijo_macros.h 26
italic style,inthisguide 11
-L (assembleroption)o, 32
-1 (assembleroption). 33

labels. See assembler labels

LE (CFLOPerator) oottt e 109
less than or equal (assembler operator). 49
less than (assembler operator).c.c.ou.... 49
library modules. 60
LIBRARY (assembler directive). 57,59
lightbulb icon, in thisguide. 11
LIMIT (assembler directive). 70
_ LINE__ (predefined symbol) 22
#line (assembler directive) 89
lines per page, in assembler listfile 35
listfileformat............ 25
DOAY. .o 25
CRC. . 25
header L L i 25
symbol and cross reference 25
listing control directives, 85
LITERAL (CFloperator)c..ovuvenenen... 109
LOAD (CFLOperator)ovoe e eeieieeneaennn. 111
local value, defining 72
LOCAL (assembler directive). 77
location counter. See program location counter
LOCFRAME (assembler directive). 98
logical AND (assembler operator) 45
logical exclusive OR (assembler operator) 54
logical NOT (assembler operator). 51
logical OR (assembler operator) 51
logical shift left (assembler operator) 53
logical shift right (assembler operator) 53
low byte (assembler operator). 49
low half word (assembler operator). 50
low word (assembler operator) 50
LOW (assembler operator)ooueuenennn.. 49
LSHIFT (CFloperator).covvueneenennenen.. 109
LSTCND (assembler directive). 85
LSTCOD (assembler directive). 85
LSTEXP (assembler directives) 85
LSTMAC (assembler directive) 85
LSTOUT (assembler directive). 85

Index °

LSTPAG (assembler directive) 85
LSTREP (assembler directive) 85
LSTXRF (assembler directive) 85
LT (CFILOperator)c.vuntne e 109
LWRD (assembler operator)oveuenn.. 50
LW1 (assembler operator).c.ouvuienenen.. 50
M: (operand modifier). 71
-M (assembler option).ttt 33
macro execution information, including in list file 29
macro processing directives, 77
macro quote charactersc..vuevrenennen... 79

specifying 33
MACRO (assembler directive) 77
macros. See assembler macros
memory space, reserving and initializing 94
MEMOTIY, reServing SPaCe iN. . .. oo v vvvv v e eneenenn 94
#message (assembler directive). 89
messages, excluding from standard output stream 35
MOD (CFLOperator). . .. «ovvve e e eeeeeeenn 109
module ConSiStency. vvv vt 61
module control directives, 59
MODULE (assembler directive) 59
modules

assembling multi-modules files 61

terminating.oviit 60
modulo (assembler operator) 50
msa (filename extension)cuuveenn... 15
MUL (CFLOPerator) «ovvve e ie e eeeeeeeeenn 109
multibyte character support., 34
multiplication (assembler operator) 43
-N (assembler option), 34
-n (assembleroption), 34
NAME (assembler directive). 59

121

122

Naming CONVENtIONSc.vu v vt vrnenennenennnnn 11

NE (CFLoperator).cvve e 110
not equal (assembler operator) 50
NOT (CFLoperator)c.cuuueuiunnnenenen... 109
-O (assembler option)vvv i 34
-0 (assembler option)t 35
ODD (assembler directive)coovini.... 65
operand modifiers (for value assignment directives). 71
operands

formatof 17

in assembler exXpressions 18
operations, formatof. 17
operation, Silent i 35
operators. See assembler operators
OPHiON SUMMAIY . .. v v vttt et e e e ae e 28
OR (CFLOperator).ovvveeeenaenenn.n 110
ORG (assembler directive) 65
OVERLAY (assembler directive) 62
-p (assembleroption), 35
PAGE (assembler directive) 85
PAGSIZ (assembler directive). 85
parameters, typographic convention 11
part number, of thisguide 2
PLC. See program location counter
#pragma (assembler directive) 89
precedence, of assembler operators. 41
predefined register symbols 21
predefined symbols. i 21

in assembler macros. i 79

undefining 36
prefix tooperands 71
preprocessor symbols

defining and undefining L. 91

IAR Assembler

Reference Guide for V850

defining on command line 30
prerequisites (programming experience). 9
program counter. See program location counter
program location counter (PLC)..................... 21

SEHNG .« v v vttt e 67
program modules, beginning. 60
PROGRAM (assembler directive). 59
programming experience, required 9
programming hints il 26
PUBLIC (assembler directive) 62
publication date, of this guide. 2
PUBWEAK (assembler directive). 62
-r (assembler option). i 35
RADIX (assembler directive)ovuvunenen... 96
reference information, typographic convention. 11
registered trademarks L oL, 2
TEZISIEIS & v vt ottt et e e e 21
relocatable eXpressions 23
relocatable segments, beginning 67
repeating Statements it 81
REPT (assembler directive) 77
REPTC (assembler directive)c.ovu.... 77
REPTI (assembler directive).covvvnnnn.. 77
REQUIRE (assembler directive). 62
RSEG (assembler directive) 65
RSHIFTA (CFLoperator)covuvnenennennn. 110
RSHIFTL (CFI operator)c.ovuivuenunnunnn. 110
RTMODEL (assembler directive) 59
rules, in CFl directives 106
runtime model attributes, declaring. 61
-S (assembleroption) 35
-s (assembler option). 36
second byte (assembler operator) 46

segment begin (assembler operator) 51
segment control directives. 65
segment end (assembler operator). 52
segment size (assembler operator) 53
segments
absolute 67
aligning 68
common, beginning 67
relocatable L L 67
SET (assembler directive). 70
SFB (assembler operator) 51
SFE (assembler operator)c.cuvuenennn.. 52
SFR. See special function registers
silent operation, specifying in assembler. 35
simple rules, in CFl directives. 106
SIZEOF (assembler operator)c.c.ouvunn.. 53
source files, including. 91, 97
source format, assembler 17
source line numbers, changing 92
special function registers. 26, 74
STACK (assembler directive) 65
standard input stream (stdin), reading from. 31
standard output stream, disabling messagesto 35
statements, repeating.ottt i 81
SUB (CFIoperator)c.cuuuunenunnnnnn.. 110
subtraction (assembler operator). 44
__SUBVERSION__ (predefined symbol). 22
symbol and cross-reference table, in assembler list file. . . . 25
See also Include cross-reference
symbol control directives 62
symbol values, checking. 72
SYMBOL (assembler directive) 62
symbols
See also assembler symbols
exporting to other modules. 63
predefined, in assembler 21
predefined, in assembler macro 79
user-defined, case sensitive 36
s85 (filename extension) 15

Index °

T

-t (assembler option)t 36
tab spacing, specifying in assembler list file............ 36
temporary values, defining 71
terminology.o vt et 10
third byte (assembler operator) 46
__TID__ (predefined symbol). 22
_ TIME__ (predefined symbol) 22
time-criticalcode i 81
tools icon, inthisguide............... 11
trademarks 2
true value, in assembler expressions 20
typographic Conventionsvuevuenennen... 11
-U (assembler option)vviinii i 36
UGT (assembler operator)coeueuen.. 54
ULT (assembler operator)c.ouvuvunenennen.. 54
UMINUS (CFLoperator).ovuerenenenennennn. 109
unary minus (assembler operator). 44
unary plus (assembler operator) 43
#undef (assembler directive). 89
unsigned greater than (assembler operator). 54
unsigned less than (assembler operator) 54
user symbols, case sensitive 36
-v (assembler option) 37
value assignment directives. 70
values, defining. 94
VAR (assembler directive)c..... 70
__VER__ (predefined symbol)...................... 22
version, IAR Embedded Workbench. 2
version, of assembler 22
V850 architecture and instructionset 9

123

124

W

-w (assembler option) 37
WAININEZS « « o v ov ettt e e e et 115

disabling i 37
warnings icon, in thisguide 11
-X (assembler option)i i 38
xcl (filename extension) 27,31, 37
XOR (assembler operator)coiinin.. 54
XOR (CFLoperator)covninenennnnnenen... 110

Symbols

A (assembler Operator).o v vt 46
_args (assembler directive) 77
_args (predefined macro symbol) 79
__AVS850__ (predefined symbol) 22
__ BUILD_NUMBER___ (predefined symbol) 22
_ DATE__ (predefined symbol)..................... 22
__FILE__ (predefined symbol). 22
_ IAR_SYSTEMS_ASM__ (predefined symbol) 22
__LINE__ (predefined symbol) 22
__SUBVERSION__ (predefined symbol). 22
__TID__ (predefined symbol). 22
__TIME__ (predefined symbol) 22
__VER__ (predefined symbol)...................... 22
- (assembler operator). 44
-B (assembleroption) i 29
-Cc (assembler option)iiiiiiiaa. 29
-D (assembler option) 30
-E (assembler option)i i 31
-f (assembler option). i 27,31
-G (assembler option) 31
- (assembler option).ot 32
-i(assembleroption).l 32
-L (assembler option) 32
IAR Assembler

Reference Guide for V850

-1 (assembleroption). i 33
-M (assembler option).t 33
-N (assembler option) o ii i 34
-n (assembler option)l 34
-O (assembler option)o vt 34
-0 (assembler option)l 35
-p (assembleroption), 35
-r (assembler option). 35
-S (assembleroption) 35
-s (assembler option). 36
-t (assembler option).l 36
-U (assembler option)ovvinin i 36
-v (assembler option)iiiiiia 37
-w (assembler option) 37
-X (assembler option)c.iiiiiia 38
--fpu (assembleroption), 31
! (assembler operator). 51
= (assembler operator)., 50
* (assembler Operator) 43
/ (assembler operator) 44
/*...%/ (assembler directive). 96
// (assembler directive), 96
& (assembler Operator)o vt 45
&& (assembler operator) 45
#define (assembler directive) 89
#elif (assembler directive). 89
#else (assembler directive) 89
#endif (assembler directive) 89
#error (assembler directive) 89
#if (assembler directive) 89
#ifdef (assembler directive). 89
#ifndef (assembler directive). 89
#includefiles. 32
#include files, specifying 32
#include (assembler directive) 89
#line (assembler directive), 89
#message (assembler directive). L. 89
#pragma (assembler directive) 89
#undef (assembler directive). 89

o (assembler Operator)viiii 50
+ (assembler Operator)t 43-44
< (assembler Operator)veueninenenn.. 49
<< (assembler Operator)ueuenenenn.. 53
<= (assembler Operator)ueuenenenn.. 49
<> (assembler Operator)uuiiiiienena. 50
= (assemblerdirective) 70
= (assembler Operator)oeueninenenn.. 47
== (assembler Operator)c.eueuenenn.. 47
> (assembler Operator)vuieninenenn.n 48
>= (assembler Operator)oeuiniienna.. 47
>> (assembler Operator)viiin i 53
| (assembler operator)t 45
Il (assembler operator).t 51
~ (assembler operator) 45
$ (assembler directive)ov i 96
$ (program location counter). 21

Index °

125

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Document conventions
	Typographic conventions
	Naming conventions

	Introduction to the IAR Assembler for V850
	Introduction to assembler programming
	Getting started

	Modular programming
	External interface details
	Assembler invocation syntax
	Passing options
	Environment variables
	Error return codes

	Source format
	Assembler instructions
	Syntax deviations
	Instructions with a condition code as operand
	PREPARE/DISPOSE

	Expressions, operands, and operators
	Integer constants
	ASCII character constants
	Floating-point constants
	TRUE and FALSE
	Symbols
	Labels
	Program location counter (PLC)

	Register symbols
	Predefined symbols
	Including symbol values in code
	Testing symbols for conditional assembly

	Absolute and relocatable expressions
	Expression restrictions
	No forward
	No external
	Absolute
	Fixed

	List file format
	Header
	Body
	Summary
	Symbol and cross-reference table

	Programming hints
	Accessing special function registers
	Example

	Using C-style preprocessor directives

	Assembler options
	Setting command line assembler options
	Extended command line file

	Summary of assembler options
	Description of assembler options
	-B
	-c
	-D
	-E
	-f
	--fpu
	-G
	-I
	-i
	-L
	-l
	-M
	-N
	-n
	-O
	-o
	-p
	-r
	-S
	-s
	--t
	-U
	-v
	-w
	-x

	Assembler operators
	Precedence of operators
	Summary of assembler operators
	Unary operators – 1
	Multiplicative arithmetic operators – 2
	Additive arithmetic operators – 3
	Shift operators – 4
	AND operators – 5
	OR operators – 6
	Comparison operators – 7

	Description of operators
	*
	+
	+
	–
	–
	/
	AND (&&)
	BINAND (&)
	BINNOT (~)
	BINOR (|)
	BINXOR (^)
	BYTE1
	BYTE2
	BYTE3
	BYTE4
	DATE
	EQ, =, ==
	GE, >=
	GT, >
	HIGH
	HI1
	HWRD
	LE, <=
	LOW
	LT, <
	LW1
	LWRD
	MOD (%)
	NE, <>, !=
	NOT (!)
	OR (||)
	SFB
	Syntax
	Parameters
	Description

	SFE
	Syntax
	Parameters
	Description

	SHL (<<)
	SHR (>>)
	SIZEOF
	Syntax
	Parameters
	Description

	UGT
	ULT
	XOR

	Assembler directives
	Summary of assembler directives
	Module control directives
	Syntax
	Parameters
	Descriptions
	Beginning a program module
	Beginning a library module
	Terminating a module
	Terminating the source file
	Assembling multi-module files
	Declaring runtime model attributes

	Symbol control directives
	Syntax
	Parameters
	Descriptions
	Exporting symbols to other modules
	Exporting symbols with multiple definitions to other modules
	Importing symbols
	Referring to scoped C/C++ symbols

	Examples

	Segment control directives
	Syntax
	Parameters
	Descriptions
	Beginning an absolute segment
	Beginning a named absolute segment
	Beginning a relocatable segment
	Beginning a common segment
	Setting the program location counter (PLC)
	Aligning a segment

	Examples
	Beginning an absolute segment
	Beginning a relocatable segment
	Beginning a common segment
	Aligning a segment

	Value assignment directives
	Syntax
	Parameters
	Operand modifiers
	Example

	Descriptions
	Defining a temporary value
	Defining a permanent local value
	Defining a permanent global value
	Checking symbol values

	Examples
	Redefining a symbol
	Using local and global symbols
	Using special function registers
	Using the LIMIT directive

	Conditional assembly directives
	Syntax
	Parameters
	Descriptions
	Examples

	Macro processing directives
	Syntax
	Parameters
	Descriptions
	Defining a macro
	Passing special characters
	Predefined macro symbols
	How macros are processed
	Repeating statements

	Examples
	Coding inline for efficiency
	Using REPTC and REPTI

	Listing control directives
	Syntax
	Parameters
	Descriptions
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Controlling the listing of generated lines
	Generating a cross-reference table
	Specifying the list file format

	Examples
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros

	C-style preprocessor directives
	Syntax
	Parameters
	Descriptions
	Defining and undefining preprocessor symbols
	Conditional preprocessor directives
	Including source files
	Displaying errors
	Ignoring #pragma
	Comments in C-style preprocessor directives
	Changing the source line numbers

	Examples
	Using conditional preprocessor directives
	Including a source file

	Data definition or allocation directives
	Syntax
	Parameters
	Descriptions
	Examples
	Generating a lookup table
	Defining strings
	Reserving space

	Assembler control directives
	Syntax
	Parameters
	Descriptions
	Controlling case sensitivity

	Examples
	Including a source file
	Defining comments
	Changing the base
	Controlling case sensitivity

	Function directives
	Syntax
	Parameters
	Descriptions

	Call frame information directives
	Syntax
	Names block directives
	Extended names block directives
	Common block directives
	Extended common block directives
	Data block directives

	Parameters
	Descriptions
	Backtrace rows and columns
	Defining a names block
	Extending a names block
	Defining a common block
	Extending a common block
	Defining a data block

	Simple rules
	Simple rules for resources
	Simple rules for CFAs

	CFI expressions
	Unary operators
	Binary operators
	Ternary operators

	Example
	Defining the names block
	Defining the common block
	Defining the data block

	Assembler diagnostics
	Message format
	Severity levels
	Options for diagnostics
	Assembly warning messages
	Command line error messages
	Assembly error messages
	Assembly fatal error messages
	Assembler internal error messages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols

