NEC

User’'s Manual

V830 Family ™

32-Bit Microprocessor

Architecture

V830™
V831™

Document No. U12496EJ2VOUMOO0 (2nd edition)
Date Published December 1997 J CP(K)

© NEC Corporation 1995
Printed in Japan

[MEMO]

SUMMARY OF CONTENTS

CHAPTER 1 INTRODUCGCTION ...t 15
CHAPTER 2 REGISTER SETS ..o nnne 17
CHAPTER 3 DATA SETS i 27
CHAPTER 4 ADDRESS SPACE ...ooiii oottt 29
CHAPTER 5 INSTRUCTIONS ... e 33
CHAPTER 6 INTERRUPTS AND EXCEPTIONS ..ottt 109
CHAPTER 7 INTERNAL MEMORY ..t 115
CHAPTER 8 RESET ..ottt e e e e 123
APPENDIX A INSTRUCTION SUMMARY ...oiiiiiiiiiiiiiiie e 125
APPENDIX B OPERATION CODE MAP ..o 139
APPENDIX € INDEX ...ttt e e s e e e e 143

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/0 settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

V830, V830 Family, V831, V810, and V810 Family are trademarks of NEC Corporation.

UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/
or other countries.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M7 96.5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

« Device availability
« Ordering information

* Product release schedule

« Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

« Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810

Fax: 011-6465-6829

J97. 8

Major Revision in This Edition

Page Description
p. 42 Notes have been added to the description of ABcond in Section 5.3.
p. 81 The operation code of MULT3 in Section 5.3 has been modified.
p. 109 A column containing interrupt request names has been added to Table 6-1.
p. 115 to 122 Chapter 7 has been added.

The mark % shows major revised points.

[MEMO]

Intended readers

Purpose

Configuration

How to use this manual

Legend

PREFACE

This manual is intended for those users who wish to become familiar with the
functions of the V830 Family, and those involved in the design of systems based
on the V830 Family.

e The V830 Family products
« V830: puPD705100
e V831l: puPD705101

The purpose of this manual is to assist users in understanding the architecture
of the V830 Family, i.e., the topics listed in “Configuration” below.

This manual covers the following:

* Register set

» Data set

e Address space

* Instructions

* Interrupts and exceptions
e Internal memory

* Reset

Readers of this manual are assumed to have a general knowledge of electronics,
logic circuits, and microcomputers.

For an explanation of the hardware functions
- Read the User's Manual - Hardware of each device.

For an explanation of the instructions
- Read Chapter 5.

For an explanation of the electrical characteristics
- Read the Data Sheet of each device.

To gain an overall understanding of the functions provided by the V830
- Read this manual in its entirety.

Significance of a data representation : Left high, right low

Representation of active low XXX (bar above a pin or signal name)

Memory map address . Top upper, bottom lower

Note . Explanation of Note that appears in text

Caution : Point to which the user must pay par-
ticular attention

Remark . Supplementary explanation of the con-

tents of the text
9

Related documents

Numeric representations XXXX or XXXXB for a binary number
XXXX for a decimal number
XXXXH for a hexadecimal nhumber

Prefixes indicating powers of two (address space, memory capacity):

K (kilo) . 210 = 1024
M (mega) 220 = 10242
G (giga) : 230=10243

Some related documents may be preliminary editions; if so, however, this is not

indicated in this manual.

* Device-related documents

Document name Document No.
V830 Family User's Manual, Architecture This manual
V830 User’s Manual, Hardware U10064E
V831 User’s Manual, Hardware U12273E
uPD705100 (V830) Data Sheet U11483E
MPD705101 (V831) Data Sheet U12979E

< Development tool-related documents

Document name Document No.
IE-705100-MC-EM1 User’'s Manual (V830 In-Circuit Emulator) —
IE-70000-MC-NW User’s Manual (V831 In-Circuit Emulator) —
CAB830 User’s Manual (C Compiler Package) Operation (UNIXTM-based) U11013E
Operation (WindowsTM-based) U11068E
Assembly Language U11014E
C U11010E
Project Manager U11991E
ID830 User’'s Manual (C-Source Debugger) Operation (UNIX-based) —
Operation (Windows-based) U12206E
Installation (UNIX-based) —
RX830 User’'s Manual (Real-Time OS) Fundamental U11730E
Installation U11731E
Technical U11713E

10

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CONTENTS

INTRODUGCTION ...ttt e e sn e s e e e nnn e e nnnes 15
1.1 OVERVIEW ..ottt 15
1.2 FEATURES ..ottt n e 15
1.3 INTERNAL CONFIGURATION OF THE CPUccoiiiiiiieiiee e 16
REGISTER SETS ..ttt sttt ettt et e et e e skt e e st e e e s abb e e e bee e e abbeaesaneaaa 17
2.1 PROGRAM REGISTER SET ...iiiiiiiiiiieiiite ettt ettt be e 17
2.1.1 General-Purpose RegiSter Setccuuuiiiiiiiiiieeiiiiieeeeee e 17
2.1.2 Program COoUNLEr (PC) .uuuiiiiiieeeiieiiiiiiieeee e e s seeer e e e e e e e s nnannreeee s 18
2.2 SYSTEM REGISTER SET ..ottt 19
2.2.1 Program Status Word (PSW)ccocciiiiiieeeeeee st e e 19
2.2.2 Exception/Interrupt Status Save Registers (EIPC and EIPSW) 21
2.2.3 NMl/Double Exception Status Save Registers (FEPC and FEPSW) 22
2.2.4 Fatal Exception Status Save Registers (DPC and DPSW)...........ccc.cee... 22
2.2.5 Exception Cause Register (ECR) ...cccvvviiiiiiiee i 23
2.2.6 Processor ID Register (PIR)ccoccveiiiiiiieiee et e e e e e 23
2.2.7 Task Control Word (TKCW) ...cccooiiiiiiiieeieee e a e 23
2.2.8 Hardware Configuration Control Word (HCCW)eeeiiiiiiiiiiiiiiiiiiieeeeen. 24
2.3 SYSTEM REGISTER NUMBERSoiiiiiiiiiie ittt 25
DATA SETS ittt et an e 27
3.1 DATA TYPES ..ottt 27
700 0t | 01 (=T o = 28
70 7 U 1 153 o o [=To B F) 1= To =] O 28
3.2 DATA ALIGNMENT L.ttt ettt sab e be e e e sebe e e 28
ADDRESS SPACE ..ottt 29
4.1 ADDRESSING MODE ...ttt ettt s e e sbe e e s aneean 30
4.1.1 INStruCtion AAArESSES ...ooeiiviiiiiieeeiiee et 30
4.1.2 Operand AAAIESSESccooviiciiiiieieiee e e et es s e e e e e e e s e s s e e e e e e e e e e e e annnes 31
INSTRUGCTIONS ...ttt sttt e e s bt et e s abe e e eabe e e sbe e e sabeeeanbaeesnnes 33
5.1 INSTRUCTION FORMAT ..ottt ettt ettt ettt s nbe e be e enae e 33
5.2 OUTLINE OF INSTRUCTIONScooiiiiiitiieiiie ettt 35
5.3 INSTRUCTION SET ...oiiiiiiiiiiiie ittt ettt ettt sttt st sbe e bae e sab e be e e s sene e e 39
5.4 INSTRUCTION EXECUTION CYCLES ..ottt 105

11

CHAPTER 6

%« CHAPTER 7

CHAPTER 8

APPENDIX A

APPENDIX B

APPENDIX C

12

INTERRUPTS AND EXCEPTIONS ...ttt ettt sine e 109
6.1 INTERRUPT HANDLING ...ttt 110
6.1.1 Maskable INTEITUPLSueiiiiiiiiie e 110
6.1.2 Nonmaskable INTEITUPLSceiiiiee e 111
6.2 EXCEPTION HANDLINGootiiiiiieiiie ettt 112
6.3 RETURN FROM EXCEPTION/INTERRUPToccviiiiiiiiiei et 113
6.3.1 Return from EXception/INterrupteeeeeiiiiiiiiiiiiiiiieeeee e 113
6.3.2 Return from Fatal Exception Handling Routineccccccceiiiiiiiiiinnnnn. 113
6.4 PRIORITIES OF INTERRUPTS AND EXCEPTIONSccoiiiiiiiiieniieeiee e 114
INTERNAL MEMORY ..ottt sttt e e e e 115
7.1 BUILT-IN CACHE ...ttt 115
7.1.1 INSErUCtion CaACheoviiiiiiiiei e 115
7.1.2 Instruction Cache Tag Retrievalccccoiiiiiiiiiiii e 116
7.1.3 DAt CaACh@ ..o 118
7.1.4 Data Cache Tag Retrieval ... 119
7.1.5 Cache Memory Control REQISTEruuuiiiieieeeiiiiiice e 120
7.2 BUILT-IN RAM ettt e e 121
7.2.1 INSTrUCION RAM ..o 121
7.2.2 Instruction RAM RetrieVal ... 121
7.2.3 DaAta RAM ..ottt beaeaa 122
RE S ET ittt ettt 123
8.1 INITIALIZATION L.ttt e s e nnre e s e e e 123
8.2 START-UP ottt e e 124
INSTRUCTION SUMMARY ...ttt ettt ettt ettt e e sab e e e snbe e e snneas 125
Al TYPES OF INSTRUCTIONSoiiiiiiii ittt sanee s 125
A.1.1 Instructions Shared with VBLOTM 125
A.1.2 Instructions UNique t0 V810euiiiiiiiiiiiiiiiiiiiieie et 127
A.2 INSTRUCTIONS (LISTED ALPHABETICALLY) oo 129
OPERATION CODE MAP .. ettt ettt e e sabe e sabee e 139
INDEX ettt ettt ettt ettt ettt e h bt et et e R ket e e b et e e bt e e e kb e e e ehb e e e bbe e e anbeeeabbe e e anbeeeaes 143

LIST OF FIGURES

Figure No. Title Page
1-1. INnternal CoNfigUIAtIONuuiiiiiiii e e e e e e s e s e e e e e eeeeseeannnnnes 16
2-1. Program REQISTEIS ...ttt e e e e e e e ettt e e e e e e e e s aabbbbeeeeeaaaaaaeas 18
2-2. SYSEEM REGISTEIS ...ttt e ettt et e e e e e e e s s st bbb e e et e e aaaaeeeaaaannnbeeeeees 19
7-1. Built-In Cache Configurationueeiiiiieoiiiccce e e e e e e e 115
7-2. Instruction Cache Configurationoooiiiiiiiiiei e e 116
7-3. Data Cache CoNfIQUIAtiONo.uuiiiiiiiiiie et e e e e e e e e e 118

13

LIST OF TABLES

Table No. Title Page
5-1. Conditional Branch Instructions (ABcond INStruCtions)ccccvvvviieiieeeeee e 42
5-2. Conditional Branch Instructions (Bcond INStrUCHIONS)cooviiiiiiiiiiiiiiieeeeiiieeeeee e 48
5-3. (o] ol [11ToT o I @0 o [T T PP PTT PP 92
5-4. INSErUCtioN EXECULION CYCIES ...ttt a e e e e 106
6-1. Exception/INterrupt SOUICE COUEBS ...oovvveeiiiiicctiiieeiee e e r e e e e e e e 109
8-1. Conditions of Registers after RESELoooi i 123

14

CHAPTER 1 INTRODUCTION

The V830 Family, offered by NEC for built-in control applications, consists of RISC microprocessors having
the V830 as their CPU core.

1.1 OVERVIEW

The V830 Family consists of high-performance 32-bit RISC microprocessors. With an operating (internal)
frequency of 100 MHz, the V830 Family can perform the data processing demanded by multimedia devices
in only a few cycles. Besides a high interrupt responsibility and an optimized pipeline structure, a sum-of-
products instruction, double-word shiftinstruction, and high-speed branch instruction using branch predication
have been added to support multimedia functions.

Furthermore, by inheriting the V810 FamilyT™ basic instruction set at the object level, V810 Family software
can be used as is.

The V830 Family offers high performance for applications which require high-speed data processing, such
as image processing, game machines, car navigation, high-performance TVs, color facsimile machines,
Internet and intranet devices, office automation equipment, etc.

1.2 FEATURES

* Number of instructions: 102
¢ Minimum number of instruction execution cycles: 1
* General-purpose registers: 32 bits x 32
¢ Instruction set: V810 basic instruction set
Sum-of-products operation (32 bits x 32 bits + (upper/lower) 32 bits): 1-3 cycles
Saturatable arithmetic operation (with a saturation detection function)
Double-word shift (64-bit data shift): 1-2 cycles
High-speed branch
Block transfer instruction
* Memory space
Memory space, I/O space: 4G-byte linear address
¢ Internal memory
Instruction cache (direct mapping): 4K bytes
Data cache (direct mapping/write-through): 4K bytes
Instruction RAM: 4K bytes
Data RAM: 4K bytes
* Power control
* Stop mode
« Sleep mode
* CMOS structure

15

V830 FAMILYTM USER'S MANUAL

1.3 INTERNAL CONFIGURATION OF THE CPU

16

Figure 1-1 shows the internal configuration of a V830 Family microprocessor.

Figure 1-1. Internal Configuration

Barrel shifter

System registers (11)

32-bit multiplier
(with sum-of-products
operation function)

General-purpose registers
32 bits x 32

Instruction cache (4K)

Instruction RAM (4K)

Data cache (4K)

Data RAM (4K)

I@@ﬁ

Write buffer
(4 stages)

CHAPTER 2 REGISTER SETS

2.1 PROGRAM REGISTER SET

The V830 Family has two types of register sets: general-purpose register sets which can be used by
programmers, and system register sets which control the execution environment. The width of all registers
is 32 bits.

2.1.1 General-Purpose Register Set

(1) General-purpose registers
The V830 Family has 32 general-purpose registers, r0-r31, which can be used either as data registers
or address registers. Note, however, that r0, r30, and r31 contain values that are fixed by hardware or
which are used implicitly by instructions.

(a) Hardware-dependent registers
Hardware-dependent registers contain values that are fixed by hardware or which are used implicitly
by instructions.

rO : Zero register
Always contains 0.
r30 : Register reserved for operation
Serves as an auxiliary register which stores the result of a multiplication or division
instruction.
r31: Link pointer
The JAL instruction stores the return address in this register.

(b) Software-reserved registers
These registers are used by assemblers and compilers. To use them as registers for variables, first
save their contents to guard against data loss or damage. When their use is no longer required restore
the saved contents.

rl : Assembler-reserved register
Serves as aworking register for creating 32 bits ofimmediate data. Itis used implicitly when
the assembler calculates an effective address.
r2 : Handler stack pointer
Reserved as the stack pointer for a handler.
r3 : Stack pointer
Reserved for stack frame creation when a function is called.
r4 : Global pointer
Used when accessing a global variable in a data area.
r5 : Text pointer
Points to the beginning of a text area.

17

V830 FAMILYTM USER'S MANUAL

2.1.2 Program Counter (PC)

The program counter (PC) is a register which holds the first address of the instruction being executed. Bit
0 of the program counter is fixed to 0, but is forcibly masked to 0 upon a branch to a point other than a halfword
boundary (bit 0 of the address is 0).

Upon reset, the program counter is initialized to FFFFFFFOH.

Figure 2-1. Program Registers

r0 : Zero register

rl: Assembler-reserved register

r2 : Handler stack pointer

r3 : Stack pointer

r4 : Global pointer

r5: Text pointer

ré

))
(¢
)
{

r29

r30: Register reserved for operation

r31: Link pointer

PC

18

CHAPTER 2 REGISTER SETS

2.2 SYSTEM REGISTER SET

System registers are used to control the processor state, save exception/interruption information, and
manage tasks. The V830 Family has eleven 32-bit system registers. These registers can be accessed using

special instructions (LDSR and STSR instructions).

Figure 2-2. System Registers

#0 EIPC
#1 EIPSW
#2 FEPC
#3 FEPSW
#4 | ECR

#5 | PSW

46 | PIR

#7 | TKCW
#16 DPC
#17 DPSW
#31 HCCW

Remark The system register number is preceded by #.

2.2.1 Program Status Word (PSW)

The program status word is a set of flags indicating the program status (results of instruction execution)
and the processor status. If the LDSR instruction is used to modify the fields in this register, the modification
will become effective immediately after the LDSR instruction is executed.

The initial value is 00008000H.

19

V830 FAMILYTM USER'S MANUAL

PSW (#5)
31 20191817161514 13 121110 9 4 3210
Il Tt [IN[EIRTI[D[S] T T T T T Jclo
RFU 3210PP5DP¢ RFU Y|V|S|Z
Bit position Field name Meaning
31-20 RFU Reserved (fixed to 0)
19-16 13-10 Interrupt Level
Level of maskable interrupt enabled
15 NP NMI Pending
Indicates that an NMI is being handled. When an NMI is accepted, the NP bit
is set to mask NMls so that multiple interrupts will be disabled.
NP = 0: NMI processing not in progress
NP = 1: NMI processing in progress
14 EP Exception Pending
Indicates that an exception, trap, or interrupt is being handled. When an
exception event occurs, this bit is set to mask interrupts.
EP = 0: Exception, trap, or interrupt handling is not in progress.
EP = 1. Exception, trap, or interrupt handling is in progress.
13 RFU Reserved (must be fixed to 0)
12 1D Interrupt Disable
Indicates whether the V830 is ready to accept an external interrupt.
ID = 0: Interrupts are enabled.
ID = 1: Interrupts are disabled.
11 DP Debug Pending
Indicates that a fatal exception is being handled.
DP = 1: Fatal exception handling is in progress.
DP = 0: Fatal exception handling is not in progress.
10 SAT Saturate Flag
Indicates whether overflow has occurred during a saturatable arithmetic
operation. The SAT bit is held until it is cleared.
SAT = 1: Overflow has occurred
SAT = 0: No overflow has occurred
9-4 RFU Reserved (must be fixed to 0)
3 CY Carry
Indicates whether a carry occurred during an arithmetic operation.
CY = 0: No carry occurred.
CY = 1: A carry occurred.
2 ov Overflow
Indicates whether an overflow occurred during an arithmetic operation.
OV = 0: No overflow occurred.
OV = 1: Overflow occurred.
1 S Sign
Indicates whether the result of an operation is negative.
S = 0: The result of the operation is positive or zero.
S = 1. The result of the operation is negative.

20

CHAPTER 2 REGISTER SETS

Bit position

Field name

Meaning

0

4

Zero
Indicates whether the result of an operation is zero.

Z = 0: The result of the operation is other than zero.

Z = 1: The result of the operation is zero.

Remark RFU stands for Reserved for Future Use.

2.2.2 Exception/Interrupt Status Save Registers (EIPC and EIPSW)
EIPC and EIPSW are registers in which the contents of the PC and PSW will be saved when an exception

or maskable interrupt occurs — EIPC for PC and EIPSW for PSW. There is only one pair of EIPC and EIPSW.

If, therefore, it is necessary to enable multiple exceptions or multiple interrupts, the software designer must

ensure that EIPC and EIPSW will be saved.
Bit 0 of EIPC and bits 31-20, 13, and 9-4 of EIPSW are fixed to 0. If an exception occurs when the EP

bit of PSW is set (indicating that a double exception has occurred), the PC and PSW are not saved in EIPC

and EIPSW, instead being saved in FEPC and FEPSW.
The initial values are indefinite.

EIPC (#0)
31 0
[[e rrrr T T T T Tl
PC 0
EIPSW (#1)
2019181716151413 121110 9 4 3210
L | | 11t 11 INTEIRITIDIS 1T 1T clo
RFU 3|2|1|0|P|P|F|D|P ,_? RFU Y|V|S|Z
U

Remark RFU stands for Reserved for Future Use.

21

V830 FAMILYTM USER'S MANUAL

2.2.3 NMI/Double Exception Status Save Registers (FEPC and FEPSW)

When an NMI or double exception (exception that occurs when the EP bit of the PSW is 1) occurs, the PC
and PSW are saved in these registers — FEPC for PC and FEPSW for PSW. Since saving to FEPC and
FEPSW indicates a serious problem, prompt action is needed.

Bit 0 of FEPC and bits 31-20, 13, and 9-4 of FEPSW are fixed to O.

The initial values are indefinite.

FEPC (#2)
31 0
N B N O D I D I Y B IO B
PC 0

FEPSW (#3)
31 20191817161514 13121110 9 43210

T T T T T T T T T T T[T JTINIEIRITIDIS] T T T T T [clo

RFU 3210PP|L:JDP,_?_\ RFU Y|V|S|z

Remark RFU stands for Reserved for Future Use.

2.2.4 Fatal Exception Status Save Registers (DPC and DPSW)

When a fatal exception (exception that occurs when the NP bit of the PSW is set to 1) occurs, the PC and

PSW are saved in these registers — DPC in PC and DPSW in PSW. Since saving to DPC and DPSW indicates
a serious problem, prompt action is needed.

Bit 0 of DPC and bits 31-20, 13, and 9-4 of DPSW are fixed to 0.
The initial values are indefinite.

DPC (#16)
31

0
N I I D O I I I Y I Y I B I
PC 0
DPSW (#17)
2019181716 15141312 1110 9 43210
T T T T T T T T T T T T ITINIEIRITIDIST T T T T T 1clo
RFU 3210PP|L:JDP,1°_\ RFU Y|V|S|z

Remark RFU stands for Reserved for Future Use.

22

CHAPTER 2 REGISTER SETS

2.2.5 Exception Cause Register (ECR)

When an exception, maskable interrupt, or NMI occurs, its cause is stored in this register. The value held
in ECR is coded for each cause of exception (see Chapter 6).

ECR is read-only. It is impossible to write data in ECR using the LDSR instruction.

The initial value is 0000FFFOH.

ECR (#4)
31 16 15 0
r 1T 1 1T T 1T 1T 1T 1T 1T T T 111 1T 1T 1T 1T 1T 1T 1T 1T 1T T 1T 1T 11
FECC EICC
Bit position Field name Meaning
31-16 FECC Exception code of NMI or double exception
15-0 EICC Exception code of exception or interrupt

2.2.6 Processor ID Register (PIR)
This register identifies the CPU type. Its value is 00008300H. Itis read-only. Itis impossible to write data

in PIR using the LDSR instruction.
The value is fixed to 00008300H.

PIR (#6)
31 2827 24 23 20 19 16 15 1211 8 7 4 3 0
T 1 ——— ——— ——— ——— ——— ——— ———

000O0[O0OO0O0O0jOO0OO|OO0O0OO10O0O0O0O011I1/0000]0O00O00QO
ng ngn

2.2.7 Task Control Word (TKCW)
This register is provided for task control. It is read-only. It is impossible to write data in TKCW using the

LDSR instruction. It is currently not used, but is provided to ensure that compatibility is maintained.
The value is fixed to 000000EOH.

TKCW (#7)
31

—A—T|
—ox3| ™

—oT|w

—ACT| &>

—NTI| &
—<T|

RD

py)
T
C
<—HO|

Remark RFU stands for Reserved for Future Use.

23

24

V830 FAMILYTM USER'S MANUAL

2.2.8 Hardware Configuration Control Word (HCCW)

This register specifies the maskable interrupt handler address.
The initial value is 00000000H.

HCCW (#31)
31 1 0
T T T T T T 11 r 1T 1T 1T 1T 1T T 1T 1T 1T T T T T T T T T T 11
RFU A
Bit position Field name Meaning
31-1 RFU Reserved (must be fixed to 0)
0 IHA Interrupt Handler Address

Indicates the address of the maskable interrupt handler.
IHA = 1: FEOO0OONOH (built-in instruction RAM)
IHA = 0: FFFFFENOH (external memory)
n: Interrupt level

Remark RFU stands for Reserved for Future Use.

CHAPTER 2 REGISTER SETS

2.3 SYSTEM REGISTER NUMBERS

For inputs from and outputs to the system registers, system register numbers are specified in the LDSR
and STSR instructions, as follows:

Whether to allow operand specification

No. System register
LDSR STSR

0 EIPC Exception/Interrupt PC O O
1 EIPSW Exception/Interrupt PSW O O
2 FEPC Fatal Error PC O O
3 FEPSW Fatal Error PSW O O
4 ECR Exception Cause Register — O
5 PSW Program Status Word O O
6 PIR Processor ID Register — O
7 TKCW Task Control Word — O
8-15 Reserved
16 DPC Debug PC O O
17 DPSW Debug PSW O
18-30 Reserved
31 HCCW Hardware Configuration Control Word O O

— : Inhibited (inaccessible)

O : Allowed (accessible)

25

V830 FAMILYTM USER'S MANUAL

[MEMO]

26

CHAPTER 3 DATA SETS

3.1 DATATYPES

The V830 Family supports three data types: byte (8 bits), halfword (16 bits), and word (32 bits). Data of
these types must be aligned with byte, halfword, or word boundaries, respectively. Addressing is based on
little endian.

(1) Byte data
One byte of data consists of eight consecutive bits, each of which is named. Bit O is the LSB (Least
Significant Bit) while bit 7 is the MSB (Most Significant Bit). This data can be placed at any address.

7 0
wss| | | [| s
Address A

(2) Halfword data
One halfword of data consists of 16 consecutive bits, each of which is named. Bit 0 is the LSB, while
bit 15 is the MSB. Halfword data must be aligned with halfword boundaries (in address areas such that
bit 0 of the address of the segment containing bit O is 0).

15 8 7 0

Address A+1 A

A = 2n (where n is a positive integer)

(3) Word data
One word of data consists of 32 consecutive bits, each of which is named. Bit 0 is the LSB and bit 31
is the MSB. Word data must be aligned with word boundaries (in address areas such that bits 0 and 1
of the address of the segment containing bit 0 are 0).

31 16 15 0

Address A+3 A+2 A+1 A

A = 4n (where n is a positive integer)

27

V830 FAMILYTM USER'S MANUAL

3.1.1 Integers
In the V830 Family, integers are represented by twos complements. They are expressed by bytes,

halfwords, or words. Digit ordering for integers is as follows: Bit 0 is handled as the least significant bit,
regardless of the data length. Larger bit numbers correspond to higher orders.

Data length Range (in decimal notation)
Byte (8 bits) -128 to +127
Halfword (16 bits) -32768 to +32767
Word (32 bits) —2147483648 to +2147483647

3.1.2 Unsigned Integers

Unsigned integers are of a data type for which the most significant bit is not handled as a sign bit, but all
bits represent a positive integer. Data of this data type is represented by a binary number and has a size
of a byte, halfword, or word. Digit ordering for unsigned integers is as follows: Bit 0 is handled as the least
significant bit, regardless of the data length. Larger bit numbers correspond to higher orders.

Data length Range (in decimal notation)
Byte (8 bits) 0 to 255
Halfword (16 bits) 0 to 65535
Word (32 bits) 0 to 4294967295

3.2 DATA ALIGNMENT

The V830 Family requires that data be aligned with appropriate boundaries: word boundaries for word data,
halfword boundaries for halfword data, and byte boundaries for byte data. If a data alignment error is delected,
the data address is automatically changed to an accessible address. It is impossible to predict whether this
address change will lead to correct or incorrect data access. This change is made as follows:

Data size Method
Byte data —
Halfword data Bit 0 is masked to 0.
Word data Bits 0 and 1 are masked to O.

28

CHAPTER 4 ADDRESS SPACE

The V830 Family supports 4G-byte linear address spaces for both the memory space and I/O space. It
assigns 32-bit addresses to the memory space. The maximum address is 232 - 1. It also assigns 32-bit
addresses to the 1/O space.

Byte data aligned with each address is defined such that bits 0 and 7 are the LSB and MSB, respectively.
If data consists of multiple bytes, it is defined such that the byte data at the low-order address contains the
LSB and that at the high-order address contains the MSB (little-endian ordering), unless specified otherwise.

According to V830 Family terminology, data arranged in two-byte format is called halfword data, while that
arranged in four-byte format is called word data. For data consisting of multiple bytes, the low-order address
on the right and the high-order address on the left, as indicated below.

7 0
Byte at address A - - === - - - s oo Data
A Address
15 8 7 0
Halfword at address A - - - - - - oo oo oo oo Data
A+1 A Address
31 24 23 16 15 8 7 0
Word at address A ----------oo Data
A+3 A+2 A+1 A Address

29

V830 FAMILYTM USER'S MANUAL

4.1 ADDRESSING MODE
The V830 Family generates two types of addresses, as follows:

« Instruction addresses (used by instructions involving branching)
e Operand addresses (used by instructions which access data)

4.1.1 Instruction Addresses

The instruction address is determined by the contents of the program counter (PC). Each time an instruction
is executed, it is automatically incremented by 2 or 4, depending on the number of bytes constituting the
instruction being fetched. When a branch instruction is executed, the branch address is set in the PC by the
following addressing mode:

(1) Relative addressing (to PC)
The signed 9 or 26 bits (displacement, or disp) of data contained in the operation code are added to the
program counter (PC). For this addition, the displacement is handled as twos complement data. Bit 8
or 25 is the sign bit, respectively.
The JR, JAL, Bcond, and ABcond instructions use this addressing.

Addressing for JR and JAL instructions

31 0
- rrrrrrrrrrrrrrrrrrrt Tttt T r T 7T T 1 T 1T 1T1T 1T71T"/

PC 0

31 26 25 + 0
T T - rrrrrrrrrrrrrrr Tttt T T 17T T 1T 1T 1T 1]

Sign extension | S disp26 0

31 | 0
-ttt rrrrrrrrrrrtrt Tttt T r T T T T 1 T 1T 1717171/

PC 0

Addressing for Bcond and ABcond instructions

31 0
rrr1r1t1 11111 r1rrrrrrrrr1rr 11T T 1T T 11

PC 0

31 + 9 8 0
e rrrrrrrrrrrrrrrorr T L L L

Sign extension S disp9 0

31 | 0
- rrrrrrrrrrrrrrr T T T T

PC 0

30

CHAPTER 4 ADDRESS SPACE

(2)

Register addressing (via register)

The contents of the general-purpose register (r0-r31) designated in the instruction are transferred to the
program counter (PC).

The JMP instruction uses this addressing.

31 0
. T 1
registerm| 1 T 1 T T 11 B B I I B B B I
31 | o
rrrrrrrrrrrrrrrrrrrrrrr Tt T T T T T 17"
PC 0

4.1.2 Operand Addresses

(1)

(2)

(3)

Register addressing

In this addressing mode, the general-purpose register designated in the general-purpose register
designation field is accessed as an operand. This addressing is used by instructions whose operand
format is regl or reg2.

Immediate addressing
In this addressing mode, the 5 or 16 bits of data constituting the operation code are handled as an operand.
This addressing is used by those instructions whose operand format is imm5 or imm16.

Based addressing

In this addressing mode, when the memory area containing the operand is accessed, its address is
determined from the sum of the contents of the general-purpose register designated by the address
designation code and the 16-bit displacement in the instruction. This addressing is used by those
instructions having an operand format of disp16[regl].

rrrrrrrrrr 0 rrrrrprr -t rrr T
Sign extension disp16

31

V830 FAMILYTM USER'S MANUAL

[MEMO]

32

CHAPTER 5 INSTRUCTIONS

5.1 INSTRUCTION FORMAT

The V830 Family uses two instruction formats: 16-bit and 32-bit. The 16-bit instructions include binary
operation, control, and conditional branch instructions, while the 32-bit instructions include load/store and
I/0 operation instructions, instructions for handling 16 bits of immediate data, and jump-and-link instructions.

Some instructions contain unused fields, which must be fixed to 0, which are provided for future use. When
an instruction is actually loaded into memory, its configuration is as follows:

» Low-order part of each instruction format (including bit 0) —» Low-order address
» High-order part of each instruction format (including bit 15 or 31) - High-order address

(1) reg-reg instruction format [FORMAT I]
This instruction format has a six-bit operation code field and two general-purpose register designation
fields for operand specification, giving a total length of 16 bits.

opcode reg2 regl

(2) imm-reg instruction format [FORMAT II]
This instruction format has a six-bit operation code field, a five-bit immediate data field, and a general-
purpose register designation field, giving a total length of 16 bits.

15 10 9 5 4 0

I I I I I I I I I I I I I
opcode reg2 imm5

(3) Conditional branch instruction format [FORMAT Il11]
This instruction format has a three-bit operation code field, a four-bit condition code field, a nine-bit branch
displacement field (bit 0 is handled as 0 and need not be specified), and a one-bit sub-operation code,
giving a total length of 16 bits.

15 1312 9 8 10

T 1 T T 1 T T T T T T T T]s-0: Beond
opcode cond disp9 s| s=1: ABcond

s : sub-opcode

33

V830 FAMILYTM USER'S MANUAL

(4)

Medium-distance jump instruction format [FORMAT V]
This instruction format has a six-bit operation code field and a 26-bit displacement field (the lowest-order
bit must be 0), giving a total length of 32 bits.

15 10 9

T T rrrrrrrrrrrr Tt T T T T T T 11
opcode disp26 0

(5) Three-operand instruction format [FORMAT V]

(6)

()

(8)

(9)

34

This instruction format has a six-bit operation code field, two general-purpose register designation fields,
and a 16-bit immediate data field, giving a total length of 32 bits.

opcode reg2 regl

Load/store instruction format [FORMAT VI]
This instruction format has a six-bit operation code field, two general-purpose register designation fields,
and a 16-bit displacement field, giving a total length of 32 bits.

opcode reg2 regl

Extended instruction format [FORMAT VII]
This instruction format has a six-bit operation code field, two general-purpose register designation fields,
and a six-bit sub-operation code field, giving a total length of 32 bits.

0 31 26 25
T T L L L L

sub-opcode

Three-register operand instruction format [FORMAT VIlI]
This instruction format has a six-bit operation code field, three general-purpose register designation fields,
and a six-bit sub-operation code field, giving a total length of 32 bits.

0 31 26 25 2120
T T L L L L [

sub-opcode

No-operand instruction format [FORMAT IX]
This instruction format has a six-bit operation code field and a one-bit sub-operation code field, giving a
total length of 16 bits.

opcode

s : sub-opcode

CHAPTER 5 INSTRUCTIONS

5.2 OUTLINE OF INSTRUCTIONS

(1) Load/store instructions:

For data transfer between memory and register

Mnemonic Meaning
LD.B Load Byte
LD.H Load Halfword
LD.W Load Word
ST.B Store Byte
ST.H Store Halfword
ST.W Store Word
BILD Block Instruction Load to built-in instruction RAM
BIST Block Instruction Store from built-in instruction RAM
BDLD Block Data Load to built-in data RAM
BDST Block Data Store from built-in data RAM

(2) 1/0O instructions: For data transfer between I/O and registers

Mnemonic Meaning
IN.B Input Byte from port
IN.H Input Halfword from port
IN.W Input Word from port
OuT.B Output Byte to port
OUT.H Output Halfword to port
OUT.W Output Word to port

35

V830 FAMILYTM USER'S MANUAL

(3) Arithmetic operation instructions: For addition, subtraction, multiplication, division, data comparison,
and register-to-register data transfer

Mnemonic Meaning
MOV Move data
MOVHI Move with addition of High-order Immediate data
ADD Add
ADDI Add Immediate data
MOVEA Move with Addition
SuUB Subtract
MUL Multiply (signed)
MULU Multiply Unsigned
DIV Divide (signed)
DIVU Divide Unsigned
CMP Compare
SETF Set Flag condition
MIN3 Minimum on 3 operands
MAX3 Maximum on 3 operands

(4) Sum-of-products/saturatable operation instructions

Mnemonic Meaning
MUL3 Multiply on 3 operands
MAC3 Multiply and Accumulate on 3 operands
MULI Multiply on Immediate and register data
MACI Multiply and Accumulate on Immediate and register data
MULT3 Multiply with Truncation on 3 operands
MACT3 Multiply and Accumulate with Truncation on 3 operands
SATADD3 Saturatable Addition on 3 operands
SATSUB3 Saturatable Subtraction on 3 operands

36

CHAPTER 5 INSTRUCTIONS

(5) Logical operation instructions

Mnemonic Meaning
OR OR (disjunction)
ORI OR of Immediate data and register data
AND AND (conjunction)
ANDI AND of Immediate data and register data
XOR Exclusive OR
XORI Exclusive OR of Immediate and register data
NOT NOT (ones compliment)
SHL Shift Logical to the Left
SHR Shift Logical to the Right
SAR Shift Arithmetic to the Right
SHLD3 Shift to the Left of Double word on 3 operands
SHRD3 Shift to the Right of Double word on 3 operands

(6) Branch instructions: Unconditional branch instruction, conditional branch instructions which change
control according to the setting of a flag, and high-speed (advanced) branch
instructions which make use of branch history

Mnemonic Meaning
JMP Jump unconditional (via register)
JR Jump Relative to PC, unconditional
JAL Jump and Link
ABGT Advanced Branch on Greater than signed
BGT Branch on Greater than signed
ABGE Advanced Branch on Greater than or Equal signed
BGE Branch on Greater than or Equal signed
ABLT Advanced Branch on Less than signed
BLT Branch on Less than signed
ABLE Advanced Branch on Less than or Equal signed
BLE Branch on Less than or Equal signed
ABH Advanced Branch on Higher
BH Branch on Higher
ABNL Advanced Branch on Not Lower
BNL Branch on Not Lower
ABL Advanced Branch on Lower
BL Branch on Lower
ABNH Advanced Branch on Not Higher
BNH Branch on Not Higher

37

V830 FAMILYTM USER'S MANUAL

Mnemonic Meaning
ABE Advanced Branch on Equal
BE Branch on Equal
ABNE Advanced Branch on Not Equal
BNE Branch on Not Equal
ABV Advanced Branch on Overflow
BV Branch on Overflow
ABNV Advanced Branch on No Overflow
BNV Branch on No Overflow
ABN Advanced Branch on Negative
BN Branch on Negative
ABP Advanced Branch on Positive
BP Branch on Positive
ABC Advanced Branch on Carry
BC Branch on Carry
ABNC Advanced Branch on No Carry
BNC Branch on No Carry
ABZ Advanced Branch on Zero
Bz Branch on Zero
ABNZ Advanced Branch on Not Zero
BNz Branch on Not Zero
ABR Advanced Branch Always (unconditional)
BR Branch Always (unconditional)
NOP Not Always (no branching)

(7) Special instructions:

38

Instructions other than those in (1) to (6) above

Mnemonic Meaning
LDSR Load to System Register
STSR Store contents of System Register
TRAP Software Trap
RETI Return from Trap or Interrupt
CAXI Compare and Exchange Interlocked
HALT Halt
BRKRET Break Return from fatal exception
El Enable maskable Interrupt
DI Disable maskable Interrupt
STBY Standby

CHAPTER 5 INSTRUCTIONS

5.3 INSTRUCTION SET

Format of explanations of each instruction

Instruction mnemonic

Meaning

[Operation]

Explains how to write the instruction, together with the required operands. The
following abbreviations are used in the explanations of operands:

Abbreviation

Meaning

regl General-purpose register (used as a source register)

reg2 General-purpose register (used mainly as a destination
register, but with some instructions, as a source register)

reg3 General-purpose register (used mainly as a destination
register, but with some instructions, as a source register)

immx x bits of immediate data

dispx x-bit displacement

reglD System register number

vector adr Trap handler address corresponding to trap vector

Explains the function of the instruction. The following abbreviations are used:

Abbreviation

Meaning

—

Assignment

Bit concatenation

GR[X]

General-purpose register x

SR[X]

System register x

sign-extend (x)

Value x is subjected to sign extension to the length of
one word.

zero-extend (x)

Value x is subjected to zero extension to the length of
one word.

Load-Memory (X, y)

Data of size y is read from address x.

Store-Memory (X, Yy, z)

Data y is written to address x with size z.

Input-Port (x, y)

Data of size y is read from port address x.

Output-Port (x, vy, 2)

Data y is written to port address x with size z.

adr

Unsigned 32-bit address

39

V830 FAMILYTM USER'S MANUAL

[Format] Identifies an instruction format by its number.
[Operation code] Gives the operation code of an instruction by showing the bit pattern in the operation
code field.
[Flags] Explains how each flag operates.
Abbreviation Meaning

— No change

0 Change to 0

1 Change to 1
[Instruction] Briefly explains the function of the instruction.
[Description] Explains the operation of the instruction in detail.
[Supplement] Gives a supplementary explanation.
[Exception] Explains exceptions which could occur when the instruction is executed.

40

CHAPTER 5 INSTRUCTIONS

ABcond Advanced Branch on condition
[Syntax] ABcond disp9
[Operation] if conditions are satisfied

then PC ~ PC + sign-extend(disp9)
[Format] Format Il

15 9 8 10

[Operation code] . |

100$$$$ disp9 1

[Flags]

[Instruction]

[Description]

[Supplement]

The $$3$$ field indicates the condition (see Table 5-1).

ABcond - Advanced branch on condition according to a code having a 9-bit
displacement

The condition flag specified in the instruction is tested. If the condition is satisfied,
the instruction sets the PC to the sum of the current PC value and the 9 bits sign-
extended to a word, transfers control according to the resulting PC value, and leaves
a branch history.

High-speed branching is assured when an instruction with a branch history is
executed. However, since only one branch history can be held, the only instruction
carrying a branch history is the ABcond instruction executed last.

Bit O of the 9-bit displacement is masked to 0. Since the current PC value used for
calculationis the start address of the ABcond instruction itself, the branch destination
will be the instruction itself if the displacement is 0.

The branch history is erased if one of the following conditions is satisfied:

* Reset

« Execution of BILD instruction (instruction transfer from external memory to built-
in instruction RAM)

» Rewriting of IRAMR register (built-in instruction RAM change)

« Clearing of instruction cache

« Rewriting of instruction cache tag

41

V830 FAMILYTM USER'S MANUAL

Pay careful attention to the following when loading a program:

» Because the program is loaded into built-in instruction RAM only by the BILD
instruction, the branch history is automatically erased.

* When the program is loaded into the cachable area, the branch history is erased
by clearing the instruction cache (setting the ICC bit of the cache memory control
register (CMCR) to 1).

» When the program is loaded into the uncachable area, erase the previous branch
history by executing the ABR instruction. If the user does not erase it, an incorrect
branch occurs when the previous branch history points to the program area which
was rewritten.

[Exception] None
Table 5-1. Conditional Branch Instructions (ABcond Instructions)
Instruction Bits 12-9 Status of condition flag Branch condition

Integer ABGT 1111 ((S xor OV) or Z2) =0 Greater than signed

ABGE 1110 (S xor OV) =0 Greater than or equal signed

ABLT 0110 (S xor OV) =1 Less than signed

ABLE 0111 ((SxorOV)orz)=1 Less than or equal signed
Unsigned integer | ABH 1011 (CYorz)=0 Higher (Greater than)

ABNL 1001 CYy=0 Not lower (Greater than or equal)

ABL 0001 Cy=1 Lower (Less than)

ABNH 0011 (CYorz)=1 Not higher (Less than or equal)
Common ABE 0010 Z=1 Equal

ABNE 1010 Z=0 Not equal
Other ABV 0000 ov=1 Overflow

ABNV 1000 ov=0 No overflow

ABN 0100 S = Negative

ABP 1100 S = Positive

ABC 0001 Cy=1 Carry

ABNC 1001 CYy=0 No carry

ABZ 0010 Z= Zero

ABNZ 1010 Z= Not zero

ABR 0101 — Always (unconditional)

42

CHAPTER 5 INSTRUCTIONS

ADD Add
[Syntax] (1) ADD regl, reg2
(2) ADD immb5, reg2
[Operation] (1) GR[reg2] —~ GR[reg2] + GR[regl]
(2) GR[reg2] - GR[reg2] + sign-extend(immb5)
[Format] (1) Format |
(2) Format Il
_ 15 109 54 0
[Operation code] D) 000001 | reg2 | regl
15 109 54 0
(2 | 010001| reg2 |imm5|
[Flags] CY : Assumes 1 if there is a carry from the MSB. Otherwise, assumes 0.
OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.
S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.
Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.
[Instruction] (1) ADD - Add the contents of registers
(2) ADD - Add the contents of a register and immediate data (5 bits)
[Description] (1) The instruction adds the word in regl to the word in reg2 and stores the sum
in reg2. The contents of regl remain unchanged.
(2) The instruction adds the 5 bits of immediate data, sign-extended to a word, to
the word in reg2 then stores the sum in reg2.
[Exception] None

43

V830 FAMILYTM USER'S MANUAL

44

ADDI Add Immediate data
[Syntax] ADDI imm16, regl, reg2
[Operation] GR[reg2] - GR[regl] + sign-extend(imm16)
[Format] Format V
15 109 54 031 16
[Operation code] 101001 | reg2 | regl imm16

[Flags]

[Instruction]

[Description]

[Exception]

CY : Assumes 1 if there is a carry from the MSB. Otherwise, assumes 0.
OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg?2] is zero. Otherwise, assumes 0.

ADDI - Add the contents of a register and immediate data (16 bits)

The instruction adds the 16 bits of immediate data, sign-extended to a word, to the

word in regl then stores the sum in reg2. The contents of regl remain as is.

None

CHAPTER 5 INSTRUCTIONS

AND AND (conjunction)
[Syntax] AND regl, reg2

[Operation] GR[reg?] —~ GR[reg2] AND GR[regl]

[Format] Format |

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 0
| 001101| reg2 | regl |

CY: —
ov: 0
S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z . Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

AND - AND of registers

The instruction ANDs the words in regl and reg2 then stores the resultin reg2. The
contents of regl remain as is.

None

45

V830 FAMILYTM USER'S MANUAL

46

ANDI AND of Immediate data and register data
[Syntax] ANDI imm16, regl, reg?2
[Operation] GR[reg?] —~ GR[regl] AND zero-extend(imm16)
[Format] Format V
. 15 109 54 031 0
[Operation code] | 101101 | reg2 | regl | imm16
[Flags] CY: —
Oov: 0
S :0

[Instruction]

[Description]

[Exception]

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

ANDI - AND contents of a register and immediate data (16 bits)

The instruction ANDs the 16 bits of immediate data, zero-extended to a word, and
the word in regl then stores the result in reg2. The contents of regl remain as is.

None

CHAPTER 5 INSTRUCTIONS

Bcond Branch on condition
[Syntax] Bcond disp9
[Operation] if condition are satisfied
then PC —~ PC + (sign-extend)disp9
[Format] Format IlI
15 98 10

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

| 100$$$$| disp9 I0

The $$$$ field indicates the condition (see Table 5-2).

CYy: —
ov: —
S | —
Z . —

Bcond - Branch on condition according to a code having a 9-bit displacement

The condition flag specified in the instruction is tested. If the condition is satisfied,
the instruction sets the PC to the sum of the current PC value and the 9-bit
displacement, sign-extended to a word, then transfers control according to the
resulting PC value. Bit 0 of the 9-bit displacement is masked to 0. Since the current
PC value used for calculation is the start address of the Bcond instruction itself, the
branch destination will be the instruction itself if the displacement is 0.

None

47

V830 FAMILYTM USER'S MANUAL

Table 5-2. Conditional Branch Instructions (Bcond Instructions)

Instruction Bits 12-9 Status of condition flag Branch condition

Integer BGT 1111 ((SxorOV)orz) =0 Greater than signed

BGE 1110 (S xor OV) =0 Greater than or equal signed

BLT 0110 (S xor OV) =1 Less than signed

BLE 0111 ((SxorOV)orz)=1 Less than or equal signed
Unsigned integer | BH 1011 (CYorz)=0 Higher (Greater than)

BNL 1001 CY=0 Not lower (Greater than or equal)

BL 0001 Cy=1 Lower (Less than)

BNH 0011 (CYorz)=1 Not higher (Less than or equal)
Common BE 0010 Z=1 Equal

BNE 1010 Z=0 Not equal
Other BV 0000 ov=1 Overflow

BNV 1000 ov=0 No overflow

BN 0100 S = Negative

BP 1100 S= Positive

BC 0001 Cy=1 Carry

BNC 1001 Cy=0 No carry

BZ 0010 Z= Zero

BNZ 1010 Z= Not zero

BR 0101 — Always (unconditional)

NOP 1101 — Not Always (no branch)

48

CHAPTER 5 INSTRUCTIONS

BDLD Block Data Load to built-in data RAM
[Syntax] BDLD [regl], [reg2?]
[Operation] Store-internal-data-Memory(GR[reg?2], Load-Memory(GR[reg1], 16 bytes), 16 bytes)
[Format] Format VII
_ 15 109 5 4 031 2625 16
[Gperation code] 111110 | reg2 | regl | 100001 RFU
[Flags] CY: —
ov: —
S J—
7z —

[Instruction]

[Description]

[Exception]

BDLD - Block data load to internal memory

The instruction transfers four words (16 bytes) of data from external memory to built-
in data RAM. In the instruction, regl indicates the external memory address, while
reg2 indicates the built-in data RAM offset address.

Bits 0-3 of regl and reg2 (addresses) must be 0.

None

49

V830 FAMILYTM USER'S MANUAL

50

BDST Block Data Store from built-in data RAM
[Syntax] BDST [reg?2], [regl]
[Operation] Store-Memory(GR[regl], Load-internal-data-Memory(GR[regZ2], 16 bytes), 16 bytes)
[Format] Format VII
_ 15, 109 54 031 2625 16
[Operatlon COde] 111110 | reg2 | regl | 100011 RFU
[Flags] CY: —
ov: —
S J—
Z R

[Instruction]

[Description]

[Exception]

BDST - Block data store from internal data memory to external memory

The instruction transfers four words (16 bytes) of data from built-in data RAM to
external memory. In the instruction, reg2 indicates the built-in data RAM offset
address, while regl indicates the external memory address.

Bits 0-3 of regl and reg2 (addresses) must be 0.

None

CHAPTER 5 INSTRUCTIONS

BILD Block Instruction Load to built-in instruction RAM
[Syntax] BILD [regl], [reg?]
[Operation] Store-internal-instruction-Memory(GR[reg2], Load-Memory(GR[reg1], 16 bytes), 16
bytes)
[Format] Format VII
. 15 109 5 4 031 2625 16
[Operation code] 111110 | reg2 | regl | 100000 RFU
[Flags] CY: —
ov: —
S —
Z J—

[Instruction]

[Description]

[Supplement]

[Exception]

BILD - Block instruction load to internal memory

The instruction transfers four words (16 bytes) of data from external memory to built-
in instruction RAM. In the instruction, regl indicates the external memory address,
while reg2 indicates the built-in instruction RAM offset address.

Bits 0-3 of regl and reg2 (addresses) must be 0.

When the BILD instruction is executed, the branch history for the ABcond instruction
(high-speed branching) is erased.

None

51

V830 FAMILYTM USER'S MANUAL

52

BIST Block Instruction Store from built-in instruction RAM
[Syntax] BIST [reg?2], [regl]
[Operation] Store-Memory(GR[reg1l], Load-internal-instruction-Memory(GR[reg2], 16 bytes), 16
bytes)
[Format] Format VII
_ 15 109 5 4 031 2625 16
[Operation code] 111110 | reg2 | regl | 100010 RFU
[Flags] CY: —
ov: —
S J—
Z J—

[Instruction]

[Description]

[Exception]

BIST - Block instruction store from internal instruction memory to external memory

The instruction transfers four words (16 bytes) of data from built-in instruction RAM
to external memory. In the instruction, reg2 indicates the built-in instruction RAM
offset address, while regl indicates the external memory address.

Bits 0-3 of regl and reg2 (addresses) must be 0.

None

CHAPTER 5 INSTRUCTIONS

BRKRET Break Return from fatal exception
[Syntax] BRKRET
[Operation] PC ~ DPC
PSW ~ DPSW
[Format] Format IX
15 109 10
[Operation code] |011001 | RFU | 1 |
[Flags] CY: —
ov: —
S | —
zZ . —
[Instruction] BRKRET - Break return
[Description] The instruction effects a return from a fatal exception by fetching the PC and PSW

from the DPC and DPSW system registers.

When the instruction is executed, the return PC and PSW are retrieved from the DPC
and DPSW. The retrieved return PC and PSW are set in the PC and PSW so that
program execution will jump to the PC.

[Supplement] Use this instruction only when processing is needed for a return from a fatal
exception.
[Exception] None

53

V830 FAMILYTM USER'S MANUAL

54

CAXI Compare And Exchange Interlocked
[Syntax] CAXI disp16[reg1l], reg2
[Operation] locked
adr — GR[regl] + (sign-extend)displ16
tmp — Load-Memory(adr,Word)
if GR[reg2] = tmp(comparison;result — GR[reg2] - tmp)
then Store-Memory(adr, GR[30], Word)
GR[reg2] ~ tmp
else Store-Memory(adr, tmp, Word)
GR[reg2] ~ tmp
unlocked
[Format] Format VI
15 109 5 4 031 16
[Operation code] | 111010 | re92| regl | disp16

[Flags]

[Instruction]

[Description]

CY : Assumes 1 if comparison involves a borrow from the MSB. Otherwise, as-
sumes 0.

OV : Assumes 1 if comparison has encountered overflow. Otherwise, assumes 0.

S : Assumes 1 if the comparison result is negative. Otherwise, assumes 0.

Z : Assumes 1 if the comparison result is zero. Otherwise, assumes 0.

CAXI - Compare and exchange interlocked
The instruction synchronizes the processors of a multi-processor system. The data

specified by displ6[regl] is used for synchronization (a lock word, for example).
The condition prior to the execution of the instruction is as follows:

Newly set lock word GR[30]
Previously read lock word GR[reg2]
Lock word The lock word is the word at the address

specified by GR[regl] + (sign-extend)disp16.
Bits 0 and 1 of the address are masked to O.

CHAPTER 5 INSTRUCTIONS

[Exception]

In this condition, the CAXI instruction performs the following:

(1)
()
®3)

(4)

(%)

(6)

Locks the bus to prevent access by other processors.

Fetches the lock word.

Compares the lock word with the previously read lock word and sets the flags
such that they reflect the result of the comparison.

If the new and old lock words match, it indicates that the conditions under which
the previous access was made are still effective (no lock due to access by a
program running on another processor).

Since execution of the CAXI instruction changes the condition, the instruction
sets the lock word in GR[30] (new lock word).

If the new and old lock words do not match, it indicates that the conditions under
which the previous access was made are no longer effective (lock due to access
by a program running on another processor). Therefore, the instruction sets the
lock word in GR[reg?2] to determine the condition assumed by the lock word.
Unlocks the bus.

None

55

V830 FAMILYTM USER'S MANUAL

CMP

Compare

[Syntax]

[Operation]

[Format]

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

56

(1)
(2)

(1)
(2)

(1)
(2)

(1)

(2)

CY:
oV
. Assumes 1 if the result is negative. Otherwise, assumes 0.
. Assumes 1 if the result is zero. Otherwise, assumes 0.

(1)
(2)

(1)

(2)

CMP regl, reg2
CMP immb5, reg2

result —« GR[reg2] - GR[regl]
result « GR[reg2] - sign-extend(immb5)

Format |
Format Il

15 109 5 4 0
| 000011| reg2 | regl |

15 109 54 0
| 010011 | reg2 | imm5|

Assumes 1 if there is a borrow from the MSB. Otherwise, assumes 0.
Assumes 1 if overflow has occurred. Otherwise, assumes 0.

CMP - Compare registers
CMP - Compare register and immediate data (5 bits)

The instruction compares the words in reg2 and regl and sets the condition flag
according to the result. This comparison involves subtracting the contents of
reglfrom those of reg2. The contents of regl and reg2 remain as is.

The instruction compares the word in reg2 with the five bits of immediate data,
sign-extended to a word, and sets the condition flag according to the result. This
comparison involves subtracting the five bits of immediate data, sign-extended
to a word, from the word in reg2. The contents of reg2 remain as is.

None

CHAPTER 5 INSTRUCTIONS

DI Disable maskable Interrupt
[Syntax] DI
[Operation] Sets the ID bit in the PSW to disable maskable interrupts.
[Format] Format I
_ 15 109 0
[Operation code] | 011110 | REU
[Flags] CY: —
ov: —
S —
Z J—

[Instruction]

[Description]

[Supplement]

[Exception]

DI - Disable interrupts
The instruction disables maskable interrupts by setting the ID bit in the PSW to 1.
This has the same effect as when the LDSR instruction is used to set the PSW ID

bit to 1.

The Dl instruction cannot disable nonmaskable interrupts. To disable nonmaskable
interrupts, use the LDSR instruction to rewrite the PSW.

None

57

V830 FAMILYTM USER'S MANUAL

DIV Divide (signed)
[Syntax] DIV regl, reg2
[Operation] GR[30] < GR[reg2] MOD GR[regl](signed)
GR[reg?] ~ GR[reg2?] + GR[regl](signed)
[Format] Format |

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

[Caution]

58

15 109 514 0
001001 | reg2 | regl

CY: —
OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.
S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z . Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.
DIV - Divide

The instruction divides the word in reg2 by the word in regl (signed operands) and
stores the quotient in reg2 and the remainder in r30. This division is conducted such
that the sign of the remainder matches the sign of the dividend. The contents of regl
remain as is. If r30 is designated as reg2, the quotient is stored in r30. Overflow
occurs when the negative maximum (80000000H) is divided by -1 (FFFFFFFFH).
In this case, reg2 contains the negative maximum and r30 contains O.

Division-by-zero exception
If the word in regl is 0, a division-by-zero exception occurs, causing a trap to the

exception handler. In this case, the contents of reg2, r30, and the flags remain as
is.

CHAPTER 5 INSTRUCTIONS

DIVU Divide Unsigned
[Syntax] DIVU regl, reg2
[Operation] GR[30] <« GR|reg2] MOD GR[regl](unsigned)
GR[reg2] GR[reg2] + GR[regl](unsigned)
[Format] Format |

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

[Caution]

15 109 54 0
001011 | reg2 | regl

CYy: —
ov: 0
S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z . Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

DIVU - Divide unsigned value

The instruction divides the word in reg2 by the word in regl (unsigned operands)
and stores the quotient in reg2 and the remainder inr30. The contents of reg1 remain
as is. If r30 is designated as reg2, the quotient is stored in r30. The flags are set
as if the results were signed data.

Division-by-zero exception

If the word in regl is 0, a division-by-zero exception occurs, causing a trap to the

exception handler. In this case, the contents of reg2, r30, and the flags remain as
is.

59

V830 FAMILYTM USER'S MANUAL

60

El Enable maskable Interrupt
[Syntax] El
[Operation] Clears the ID bit in the PSW to enable maskable interrupts.
[Format] Format Il
15109 0

[Operation code]

[Flags]

[Instruction]

[Description]

[Supplement]

[Exception]

010110 RFU

ovV: —

El - Enable interrupts
The instruction enables maskable interrupts by resetting the ID bit in the PSW to 0.
This produces the same effectas when the LDSR instructionis used to resetthe PSW

ID bit to 0.

The El instruction cannot enable nonmaskable interrupts. To enable nonmaskable
interrupts, use the LDSR instruction to rewrite the PSW.

None

CHAPTER 5 INSTRUCTIONS

HALT Halt
[Syntax] HALT
[Operation] Stops program execution.
[Format] Format IX
15 109 10

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

011010 RFU

CY: —
oVv: —
S | —
Z . —
HALT - Halt

The instruction stops the CPU and places it in sleep mode.

None

61

V830 FAMILYTM USER'S MANUAL

IN Input from port
[Syntax] (1) IN.B displ16[regl], reg2
(2) IN.H disp16[regl], reg2
(3) IN.W disp16[regl], reg2
[Operation] (1) adr — GR[regl] + (sign-extend)displ6
GRJ[reg?] Ze:%eﬁ(tﬁrﬁiﬂ Input-Port(adr, Byte)
(2) adr — GR[regl] + (sign-extend)displ6
GRJ[reg?] Z?_r%-%(ﬁrﬁjﬂ Input-Port(adr, Halfword)
(3) adr — GR[regl] + (sign-extend)displ6
GR[reg2] 00000 Input-Port(adr, Word)
[Format] Format VI
15 109 54 031 16
[Operation code] 11100% | reg2 | regl disp16

[Flags]

[Instruction]

[Description]

62

(C$: 00 =(1),01=(2), 11 = (3))

CYy:. —
ov: —
S | —
zZ . —

(1) IN.B - Input byte from port
(2) IN.H - Input halfword from port
(3) IN.W - Input word from port

(1) Theinstruction adds the data in regl and the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit port address. It reads a byte of data
from the resulting port address, zero-extends the read byte to a word, then stores
the result in reg?2.

(2) Theinstruction adds the data in regl and the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit port address. It reads a halfword of
data from the resulting port address, zero-extends the read halfword to a word,
then stores the result in reg2. Bit 0 of the unsigned 32-bit address is masked
to 0.

CHAPTER 5 INSTRUCTIONS

(3) The instruction adds the data inregl and the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit port address. It reads a word of data
from the resulting port address then stores the word in reg2. Bits 0 and 1 of the
unsigned 32-bit address are masked to 0.

[Exception] None

63

V830 FAMILYTM USER'S MANUAL

64

JAL Jump and Link
[Syntax] JAL disp26
[Operation] GR[31] -« PC+4

PC ~ PC + (sign-extend)disp26
[Format] Format IV

_ 15 10 9 0 31 1716

[Operation code] 101011 ' disp26 0
[Flags] CY: —

ov: —

S J—

Z J—

[Instruction]

[Description]

[Exception]

JAL - Jump and link

The instruction adds 4 to the current PC, saves the sum in r31, adds the 26-bit
displacement, sign-extended to a word, to the current PC, sets the sum in the PC,
then transfers control according to the newly set PC. The lowest-order bit of the 26-
bit displacement is masked to 0. Since the current PC value used for calculation
is the start address of the JAL instruction itself, the branch destination will be the
instruction itself if the displacement is 0.

None

CHAPTER 5 INSTRUCTIONS

JMP Jump unconditional (via register)
[Syntax] JMP [regl]

[Operation] PC ~ GR[regl]

[Format] Format |

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 0
| 000110| — | regl |

ovV: —

JMP - Jump to register-specified address

The instruction transfers control to the address specified by regl. Bit 0 of the address

is masked to O.

None

65

V830 FAMILYTM USER'S MANUAL

66

JR Jump Relative to PC, unconditional
[Syntax] JR disp26
[Operation] PC ~ PC + (sign-extend)disp26
[Format] Format IV
15 10 9 0 31 17 16
[Operation code] | 101010 | ' disp26 "o
[Flags] CY: —
ov: —
S J—
7z J—

[Instruction]

[Description]

[Exception]

JR - Jump to relative address

The instruction sets the PC to the sum of the current PC and the 26-bit displacement,
sign-extended to a word, then transfers control according to the newly set PC. Bit
0 of the 26-bit displacement is masked to 0.

Since the current PC value used for calculation is the start address of the JR
instruction itself, the branch destination will be the instruction itself if the displace-
ment is O.

None

CHAPTER 5 INSTRUCTIONS

LD

Load

[Syntax]

[Operation]

[Format]

[Operation code]

[Flags]

[Instruction]

[Description]

(1) LD.B disp16[regl], reg2
(2) LD.H displ6[regl], reg2
(3) LD.W displ6[regl], reg2
(1) adr ~ GR[regl] + (sign-extend)displ6

sign-extend
GR[reg2] «000O0O0O Load-Memory(adr, Byte)

(2) adr — GR[regl] + (sign-extend)displ16

sign-extend
GR[reg2] <0 0000 Load-Memory(adr, Halfword)

(3) adr — GR[regl] + (sign-extend)displ16
GR[reg2] 00000 Load-Memory(adr, Word)

Format VI

15 109 54 031 16
| 11000% | reg2 | regl | disp16

(C5: 00 =(1),01=(2),11 = (3))

CY: —
ovV: —

(1) LD.B - Load byte
(2) LD.H - Load halfword
(3) LD.W - Load word

(1) Theinstruction adds the data inregl and the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit address. It reads a byte of data from
the resulting address, sign-extends the read byte to aword, then stores the result

in reg2.

(2) The instruction adds the data inregl and the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit address. It reads a halfword of data
from the resulting address, sign-extends the read halfword to a word, then stores
the result in reg2. Bit 0 of the unsigned 32-bit address is masked to 0.

67

V830 FAMILYTM USER'S MANUAL

(3) Theinstruction adds the data in reg1 and the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit address. It reads a word of data from
the resulting address then stores the word in reg2. Bits 0 and 1 of the unsigned
32-bit address are masked to O.

[Exception] None

68

CHAPTER 5 INSTRUCTIONS

LDSR Load to System Register
[Syntax] LDSR reg2, regIlD

[Operation] SR[regID] —« GR[reg2?]

[Format] Format I

15 109 54 0
| 011100 | reg2 | regIDl

[Operation code]

[Flags] CY : — (See Supplement)
OV: — (See Supplement)
S : — (See Supplement)
Z : — (See Supplement)
[Instruction] LDSR - Load to system register
[Description] The instruction loads the word contained in reg2 to the system register designated

by the system register number (reglD). The contents of reg2 remain as is. System
register numbers uniquely identify system registers. If the LDSR instruction is
executed on a reserved system register or write-disabled system register, the
operation of the instruction will be unpredictable.

[Exception] None

[Supplement] If the specified system register number (regID) is 5 (PSW), each flag assumes the
value of the corresponding bit in reg2.

69

V830 FAMILYTM USER'S MANUAL

MAC3 Multiply and Accumulz_ite on 3_operands _(saturatable
operation on signed 32-bit operands)

[Syntax] MACS3 regl, reg2, reg3

[Operation] GR[reg3] ~ saturate(GR[reg3] + GR[reg2] x GR[regl])

[Format] Format VIII

[Operation code]

[Flags]

[Instruction]

[Description]

[Supplement]

[Exception]

70

15 109 54 031 2625 2120 16
| 111110 | reg2 | regl |011101 | RFU | reg3 |

CY: —

MACS3 - Multiply and accumulate

The instruction multiplies the word in regl by that in reg2 as signed 32-bit integers,
and adds the product to the data in reg3 as signed integers. If the sum falls outside
the range of signed 32-bit integers that can be represented, it is regarded as causing
an overflow (the low-order 32 bits of the 64 bits of the product are valid).
[If no overflow has occurred:]
The sum is stored into reg3.
[If an overflow has occurred:]
The SAT flag is set to 1. If the sum is positive, the positive maximum
(TFFFFFFFH) is stored into reg3; if the sum is negative, the negative maximum
(80000000H) is stored into reg3.
The contents of regl and reg2 remain as is.

A timing restriction is imposed on MAC3 instruction input operand reg3. If an
instruction to update reg3 is not issued within three cycles before the issue of the
MACS3 instruction, the MAC3 instruction will begin after a one-cycle halt (stall).

The flags (CY, OV, S, and Z) do not change. The SAT flag is cumulative, meaning
that once the result of a saturatable operation instruction is saturated, the flag is set
to 1 and is not reset to O even if the result of a subsequent operation instruction is
not saturated. To reset the SAT flag, use the LDSR instruction to rewrite the PSW.

None

CHAPTER 5 INSTRUCTIONS

MACI Multiply and Accumulate on Immediate and register data
[Syntax] MACI imm16, regl, reg2
[Operation] GR[reg2] ~ saturate(GR[reg2] + GR[regl] x sign-extend(imm16))
[Format] Format V
15 109 54 031 16
[Operation code] [110110 | reg2 | regt | imm16
[Flags] CY: —
ovV: —
S —
Z J—

[Instruction]

[Description]

[Supplement]

[Exception]

MACI - Multiply and accumulate immediate and register data

The instruction multiplies the word in regl by the immediate data (16 bits, sign-
extended to 32 bits) as signed integers then adds together the product and the data
inreg?2 as signed integers. If the sum falls outside the range of signed 32-bit integers
that can be represented, it is regarded as causing an overflow (the low-order 32 bits
of the 64 bits of the product are valid).
[If no overflow has occurred:]
The sum is stored into reg2.
[If an overflow has occurred:]
The SAT flag is set to 1. If the sum is positive, the positive maximum
(7TFFFFFFFH) is stored into reg?2; if the sum is negative, the negative maximum
(80000000H) is stored into reg2.
The contents of regl remain as is.

The flags (CY, OV, S, and Z) do not change. The SAT flag is cumulative, meaning
that once the result of a saturatable operation instruction is saturated, the flag is set
to 1 and is not reset to 0 even if the result of a subsequent operation instruction is

not saturated. To reset the SAT flag, use the LDSR instruction to rewrite the PSW.

None

71

V830 FAMILYTM USER'S MANUAL

MACT3 Multiply and Accumulate with Truncation on 3 operands
(saturatable operation on signed 32-bit operands)

[Syntax] MACTS3 regl, reg2, reg3

[Operation] GRJ[reg3] ~ saturate(GR[reg3] + high-order-32-bits(GR[reg2] x GR[regl]))

[Format] Format VIII

[Operation code]

[Flags]

[Instruction]

[Description]

[Supplement]

[Exception]

72

15 109 54 031 2625 2120 16
| 111110 | reg2 | regn | 011100 | RrU | regs |

CY: —

MACTS3 - Multiply and accumulate with truncation

The instruction multiplies the word in regl by that in reg2 as signed integers,
truncates the 64-bit product to discard the low-order 32 bits, then adds the high-order
32 bits of the product to the data in reg3 as signed integers.
[If no overflow has occurred:]
The sum is stored into reg3.
[If an overflow has occurred:]
The SAT flag is set to 1. If the sum is positive, the positive maximum
(7TFFFFFFFH) is stored into reg3; if the sum is negative, the negative maximum
(80000000H) is stored into reg3.
The contents of regl and reg2 remain as is.

A timing restriction is imposed on the MACT3 instruction input operand reg3. If an
instruction to update reg3 is not issued within three cycles before the issue of the
MACT3 instruction, the MACT3 instruction will begin after a one-cycle halt (stall).
The flags (CY, OV, S, and Z) do not change. The SAT flag is cumulative, meaning
that once the result of a saturatable operation instruction is saturated, the flag is set
to 1 and is not reset to 0 even if the result of a subsequent operation instruction is
not saturated. To reset the SAT flag, use the LDSR instruction to rewrite the PSW.

None

CHAPTER 5 INSTRUCTIONS

MAX3 Maximum on 3 operands
[Syntax] MAX3 regl, reg2, reg3

[Operation] GR[reg3] - max(GR[reg2],GR[regl])

[Format] Format VIII

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 031 2625 2120 16
| 111110 | reg2 | regl |010011| RFU | reg3 |

oVv: —

MAX3 - Maximum

The instruction compares the words in regl and reg2 as signed integers and stores
the larger value into reg3. The contents of regl and reg2 remain as is.

None

73

V830 FAMILYTM USER'S MANUAL

74

MIN3 Minimum on 3 operands
[Syntax] MIN3 reg1l, reg2, reg3

[Operation] GRJ[reg3] - min(GR[reg2], GR[regl])

[Format] Format VIII

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 031 2625 2120 16
| 111110 | reg2 | regl | 010010 | RFU | reg3 |

CY: —
ov: —
S | —
Z . —

MIN3 - Minimum

The instruction compares the words in regl and reg2 as signed integers and stores
the smaller value into reg3. The contents of regl and reg2 remain as is.

None

CHAPTER 5 INSTRUCTIONS

MOV Move data

[Syntax] (1) MOV reg1, reg?
(2) MOV immb5, reg2

[Operation] (1) GR[reg2] ~ GRJ[regil]
(2) GR[reg?] ~ sign-extend(immb5)

[Format] (1) Format |
(2) Format I

15 109 54 0
[Operation code] D) | 000000 | reg2 | regl |

15 109 54 0
@) | 010000 | regz | imms |

[Flags] CY: —
ov: —
S —
7z —
[Instruction] (1) MOV - Move register data

(2) MOV - Move immediate data (5 bits)
[Description] (1) The instruction copies the word in regl to reg2. The contents of regl remain as
is.
(2) The instruction copies and transfers the 5 bits of immediate data, sign-extended

to a word, to reg?2.

[Exception] None

75

V830 FAMILYTM USER'S MANUAL

76

MOVEA Move with Addition
[Syntax] MOVEA imm16, regl, reg2
[Operation] GR[reg?] —« GR[regl] + sign-extend(imm16)
[Format] Format V
_ 15 109 54 031 16
[Operatlon COde] | 101000| reg2 | regl | imm16
[Flags] CY: —
ov: —
S | —
zZ . —

[Instruction]

[Description]

[Exception]

MOVEA - Move with addition of 16-bit immediate data
The instruction adds the word in regl to the 16 bits ofimmediate data, sign-extended
to a word, then stores the sum into reg2. The contents of regl remain as is. The

flags do not change.

None

CHAPTER 5 INSTRUCTIONS

MOVHI Move with addition of High-order Immediate data
[Syntax] MOVHI imm16, regl, reg2
[Operation] GR[reg2] — GRJ[regl] + (imm16 Il 016)
[Format] Format V
_ 15 109 54 031 16
[Operation code] | 101111 | reg2 | regl | imm16
[Flags] CY: —
ov: —
S J—
7z —
[Instruction] MOVHI - Move with high-order immediate data addition
[Description] The instruction adds the word in regl to a word consisting of the high-order 16 bits

of immediate data and the low-order 16 bits of O then stores the sum into reg2. The
contents of regl remain as is. The flags do not change.

[Exception] None

77

V830 FAMILYTM USER'S MANUAL

78

MUL Multiply (signed)
[Syntax] MUL regl, reg2
[Operation] result ~ GR[reg2] x GR[regl] (signed)
GR[30] « result (high-order 32 bits)
GR[reg2] < result (low-order 32 bits)
[Format] Format |

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 0
|001000 | reg2 | regll

CY: —

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.
S : Assumes 1 if GR[reg2?] is negative. Otherwise, assumes 0.

Z . Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

MUL - Multiply

The instruction multiplies the word in regl by that in reg2 as signed data and stores
the high-order 32 bits of the result (double word) in r30 and the low-order 32 bits in
reg2. The contents of regl remain asis. If r30 is designhated as reg2, the low-order
32 bits of the result are stored in r30. Overflow occurs when the double-word result

is not equal to the low-order 32 bits, sign-extended to a double word.

None

CHAPTER 5 INSTRUCTIONS

MUL3 Multiply on 3 operands (saturatable operation on signed 32-bit operands)
[Syntax] MULS3 regl, reg2, reg3

[Operation] GRJ[reg3] ~ saturate(GR[reg2] x GR[regl])

[Format] Format VIII

[Operation code]

[Flags]

[Instruction]

[Description]

[Supplement]

[Exception]

15 109 54 031 2625 2120 16

| 111110 | reg2 | regl | 011111| RFU | reg3 |

CYy: —
ov: —
S | —
Z . —

MULS3 - Multiplication on 3 operands

The instruction multiplies the word in reg1 by that in reg2 as signed 32-bit integers.
Ifthe product falls outside the range of signed 32-bit integers that can be represented,
itisregarded as causing an overflow (the low-order 32 bits of the 64 bits of the product
are valid).
[If no overflow has occurred:]
The product is stored into reg3.
[If an overflow has occurred:]
The SAT flag is set to 1. If the product is positive, the positive maximum
(7TFFFFFFFH) is stored into reg3; if the product is negative, the negative
maximum (80000000H) is stored into reg3.
The contents of regl and reg2 remain as is.

The flags (CY, OV, S, and Z) do not change. The SAT flag is cumulative, meaning
that once the result of a saturatable operation instruction is saturated, the flag is set
to 1 and is not reset to 0 even if the result of a subsequent operation instruction is

not saturated. To reset the SAT flag, use the LDSR instruction to rewrite the PSW.

None

79

V830 FAMILYTM USER'S MANUAL

MULI Multiply on Immediate and register data
(saturatable operation on signed 32-bit operands)
[Syntax] MULI imm16, regl, reg2
[Operation] GR[reg2] ~ saturate(GR[regl] x sign-extend(imm16))
[Format] Format V
] 15 109 54 031 16
[Operatlon COde] | 111110 | reg2 | regl | imm16
[Flags] CY: —
ov: —
S J—
Z J—

[Instruction]

[Description]

[Supplement]

[Exception]

80

MULI - Multiplication involving immediate data

The instruction multiplies the word in regl by the 16 bits of immediate data (sign-
extended to 32 bits) as signed integers. If the product fulls outside the range of
signed 32-bitintegers that can be represented, itis regarded as causing an overflow
(the low-order 32 bits of the 64 bits of the product are valid).
[If no overflow has occurred:]
The product is stored into reg2.
[If an overflow has occurred:]
The SAT flag is set to 1. If the product is positive, the positive maximum
(TFFFFFFFH) is stored into reg2; if the product is negative, the negative
maximum (80000000H) is stored into reg2.
The contents of regl remain as is.

The flags (CY, OV, S, and Z) do not change. The SAT flag is cumulative, meaning
that once the result of a saturatable operation instruction is saturated, the flag is set
to 1 and is not reset to 0 even it the result of a subsequent operation instruction is
not saturated. To reset the SAT flag, use the LDSR instruction to rewrite the PSW.

None

CHAPTER 5 INSTRUCTIONS

Multiply with Truncation on 3 operands

MULT3 (operation on signed 32-bit operands)
[Syntax] MULT3 regl, reg2, reg3

[Operation] GRJ[reg3] ~ high-order-32-bits(GR[reg2] x GR[reg1])

[Format] Format VIII

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 10 9 54 031 26 25 21 20 16
| 111110 | reg2 | regl | 011110 | RFU | reg3 |

CY: —

MULT3 - Multiplication on 3 operands with truncation
The instruction multiplies the word in regl by that in reg2 as signed integers,
truncates the 64-bit product to discard the low-order into 32 bits, and stores only the

high-order 32 bits into reg3. The contents of regl and reg2 remain as is.

None

81

V830 FAMILYTM USER'S MANUAL

82

MULU Multiply Unsigned
[Syntax] MULU regl, reg2
[Operation] result — GR[reg2] x GR[regl] (unsigned)
GRJ[30] ~ result (high-order 32 bits)
GR[reg2] ~ result (low-order 32 bits)
[Format] Format |

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 0
|001010| reg2 | regll

CYy:. —

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.
S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.
Z . Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

MULU - Multiply unsigned values

The instruction multiplies the word in reg1 by thatin reg2 as unsigned data and stores
the high-order 32 bits of the result (double word) into r30 and the low-order 32 bits
into reg2. The contents of regl remain as is. If r30 is designated as reg2, the low-
order 32 bits of the result are stored into r30. The flags are set as if the result were
signed data. Overflow occurs when the double-word result is not equal to the low-
order 32 bits, zero-extended to a double word.

None

CHAPTER 5 INSTRUCTIONS

NOT Not (ones compliment)
[Syntax] NOT regl, reg2

[Operation] GR[reg2] - NOT(GR[regl])

[Format] Format |

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 0
|001111| reg2 | regl |

CYy: —

ov: 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.
Z : Assumes 1 if GR[reg2] is zero. Otherwise assumes 0.

NOT - NOT

The instruction takes the NOT (ones complement) of the word in regl and stores the
result into reg2. The contents of regl remain as is.

None

83

V830 FAMILYTM USER'S MANUAL

84

OR OR (disjunction)
[Syntax] OR regl, reg2

[Operation] GR[reg?] - GR[reg2] OR GRJ[reg1]

[Format] Format |

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 0
|001100| reg2 | regl |

CY: —

ov: o0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.
Z : Assumes 1 if GR[reg?2] is zero. Otherwise, assumes 0.

OR - OR

The instruction ORs the words in regl and reg2 and stores the result into reg2. The
contents of regl remain as is.

None

CHAPTER 5 INSTRUCTIONS

ORI OR of Immediate data and register data
[Syntax] ORI imm16, regl, reg?2
[Operation] GR[reg?] ~ GR[regl] OR zero-extend(imm16)
[Format] Format V
_ 15 109 54 031 16
[Operation code] |101100 | reg2 | regl| imm16
[Flags] CY: —
ov: o0

[Instruction]

[Description]

[Exception]

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.
Z : Assumes 1 if GR[reg2?] is zero. Otherwise, assumes 0.

ORI - OR of immediate data and register (16 bits)
The instruction ORs the word in regl and the 16 bits of immediate data, zero-
extended to a word, and stores the result into reg2. The contents of regl remain

as is.

None

85

V830 FAMILYTM USER'S MANUAL

ouT

Output to port

[Syntax]

[Operation]

[Format]

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

86

(1) OUT.B reg2, displ6[regl]
(2) OUT.H reg2, displ16[regl]
(3) OUT.W reg2, disp16[regl]

(1) adr — GR[regl] + (sign-extend)displ6
Output-Port(adr, GR[reg2], Byte)

(2) adr — GR[regl] + (sign-extend)displ6
Output-Port(adr, GR[regZ2], Halfword)

(3) adr — GR[regl] + (sign-extend)displ6
Output-Port(adr, GR[reg2], Word)

Format VI

15 109 54 031 16
| 111108 | reg2 | regl | disp16

(0%: 00=(1),01=(2),11=(3)

CYy:. —
ov: —
S | —
Z . —

(1) OUT.B - Output byte to port
(2) OUT.H - Output halfword to port
(3) OUT.W - Output word to port

(1) Theinstruction adds the data in regl and the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit port address. It outputs the low-order
one byte of data in reg2 to the resulting port address.

(2) Theinstruction adds the data in reg1 and the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit port address. It outputs the low-order
two bytes of data in reg?2 to the resulting port address. Bit 0 of the unsigned 32-
bit address is masked to O.

(3) The instruction adds the data in reg1 and the 16-bit displacement, sign-extended
to aword, to produce an unsigned 32-bit port address. It outputs the word in reg2
to the resulting port address. Bits 0 and 1 of the unsigned 32-bit address are
masked to 0.

None

CHAPTER 5 INSTRUCTIONS

RETI Return from Trap or Interrupt
[Syntax] RETI
[Operation] if PSW.NP =1
then PC — FEPC
PSW ~ FEPSW
else PC ~ EIPC
PSW ~ EIPSW
[Format] Format IX
15 109 10

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

[011001| RrrU o]

CY : Will contain the read value.
OV : Will contain the read value.
S : Will contain the read value.
Z . Will contain the read value.

RETI - Return from trap or interrupt

The instruction takes the return PC and PSW out of the system registers to enable
return from a trap or interrupt routine. Its operation is as follows:

(1) The instruction retrieves the return PC and PSW from FEPC and FEPSW if the
PSW NP flag is set to 1, or from EIPC and EIPSW if the NP flag is set to 0.
(2) The instruction sets the retrieved return PC and PSW in the PC and PSW,

causing a jump to the PC.

None

87

V830 FAMILYTM USER'S MANUAL

SAR Shift Arithmetic to the Right
[Syntax] (1) SAR regl, reg2

(2) SAR immb5, reg2
[Operation] (1) GR[reg2] ~ GR[reg?2] arithmetically shift right by GR[reg1]

(2) GR[reg?] ~ GRJreg?2] arithmetically shift right by zero-extend(imm5)
[Format] (1) Format |

(2) Format Il

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

88

15 109 54 0
(D) [000111 | regz | regt |

15 10 9 54 0
(2) | 000111 | reg2 |imm5 |

CY : Assumes 1 if the last shift-out bit is 1. Otherwise, assumes 0. If the amount
of the shift is 0, the CY flag is set to 0.

ov: o0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z . Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

(1) SAR - Shift arithmetic right by amount specified by register
(2) SAR - Shift arithmetic right by amount specified by immediate data (5 bits)

(1) The instruction arithmetically shifts the word in reg?2 to the right (copies the MSB
value at each position to the MSB in sequence) by the amount specified by the
low-order five bits in regl, then writes the result into reg2. If the amount is 0,
the reg2 value is not changed by the shift. The amount may be 0 to +31, being
represented by five bits.

(2) The instruction arithmetically shifts the word in reg?2 to the right (copies the MSB
value at each position to the MSB in sequence) by the amount specified by the
five bits of immediate data, zero-extended to a word, and writes the result into
reg2. If the amountis 0, the reg2 value is not changed by the shift. The amount
may be 0 to +31.

None

CHAPTER 5 INSTRUCTIONS

SATADD3 Saturatable Addition on 3 operands
[Syntax] SATADD3 regl, reg2, reg3

[Operation] GRJ[reg3] ~ saturate(GR[reg2] + GR[regl])

[Format] Format VIII

[Operation code]

[Flags]

[Instruction]

[Description]

[Supplement]

[Exception]

15 109 54 031 26252120 16
| 111110 | reg2 | reg1 | 020000 | RFU | regs |

CY : Assumes 1 if there is a carry from the MSB. Otherwise, assumes 0.
OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg3] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg3] is zero. Otherwise, assumes 0.

SATADD3 - Saturatable addition on 3 operands

The instruction adds together the words in regl and reg2 as signed integers.
[If no overflow has occurred:]
The sum is stored into reg3.
[If an overflow has occurred:]
The SAT flag is set to 1. If the sum is positive, the positive maximum
(TFFFFFFFH) is stored into reg3; if the sum is negative, the negative maximum
(80000000H) is stored into reg3.
The contents of regl and reg2 remain as is.

The SAT flag is cumulative, meaning that once the result of a saturatable operation
instruction is saturated, the flag is set to 1 and is not reset to 0 even if the result of
a subsequent operation instruction is not saturated. To reset the SAT flag to 0, use
the LDSR instruction to rewrite the PSW. If the result of an operation performed by
this instruction is saturated, the flags do not indicate the magnitudes of the regl and
reg2 values. This means thatthe ABGT, ABGE, ABLT, ABLE, BGT, BGE, BLT, and
BLE instructions do not assure normal branching. Instead, therefore, use the ABE,
ABNE, ABN, ABP, BE, BNE, BN, or BP instruction.

None

89

V830 FAMILYTM USER'S MANUAL

SATSUB3 Saturatable Subtraction on 3 operands
[Syntax] SATSUB3 regl, reg2, reg3

[Operation] GRJ[reg3] ~ saturate(GR[reg2] - GR[regl])

[Format] Format VIII

[Operation code]

[Flags]

[Instruction]

[Description]

[Supplement]

[Exception]

90

15 109 54 031 2625 2120 16
| 111110 | reg2 |regl | 010001| RFU | reg3 |

CY : Assumes 1 if there is a carry from the MSB. Otherwise, assumes 0.
OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg3] is negative. Otherwise, assumes 0.

Z . Assumes 1 if GR[reg3] is zero. Otherwise, assumes 0.

SATSUB3 - Saturatable subtraction on 3 operands

The instruction subtracts the word in regl from that in reg2 as signed integers.
[If no overflow has occurred:]
The difference is stored into reg3.
[If an overflow has occurred:]
The SAT flag is set to 1. If the difference is positive, the positive maximum
(TFFFFFFFH) is stored into reg3; if the difference is negative, the negative
maximum (80000000H) is stored into reg3.
The contents of regl and reg2 remain as is.

The SAT flag is cumulative, meaning that once the result of a saturatable operation
instruction is saturated, the flag is setto 1 and is not reset to 0 even if the result of
a subsequent operation instruction is not saturated. To reset the SAT flag to O, use
the LDSR instruction to rewrite the PSW. If the result of the operation performed
by this instruction is saturated, the flags do not indicate the magnitudes of the regl
and reg2 values. This means thatthe ABGT, ABGE, ABLT, ABLE, BGT, BGE, BLT,
and BLE instructions do not assure normal branching. Instead, therefore, use the
ABE, ABNE, ABN, ABP, BE, BNE, BN, or BP instruction.

None

CHAPTER 5 INSTRUCTIONS

SETF Set Flag condition
[Syntax] SETF immb5,reg2
[Operation] if conditions are satisfied

then GR[reg2] ~ 00000001H
else GR[reg2] ~ 00000000H

[Format] Format I

15 109 54 0

[Operation code]

010010| reg2 |imm5

[Flags] CY: —
ov: —
S —
7z —
[Instruction] SETF - Set flag condition
[Description] If the condition specified by the low-order four of the five bits of the immediate data

is satisfied, the instruction writes 1 into reg2; otherwise, it writes 0 into reg2. The
low-order four of the five bits of immediate data indicate one of the condition codes
listed in Table 5-3. The high-order one bit is ignored.

[Exception] None

91

V830 FAMILYTM USER'S MANUAL

92

Table 5-3. Condition Codes

Condition code Name Conditional expression
0000 \% ov=1
1000 NV oV =0
0001 C/L Cy=1
1001 NC/NL CYy=0
0010 Z Z=1
1010 NZ Z=0
0011 NH (CYorz)=1
1011 H (CYorz)=0
0100 S/N S=1
1100 NS/P S=0
0101 T always 1
1101 F always 0
0110 LT (S xor OV) = 1
1110 GE (S xor OV) =0
0111 LE ((SxorOV)orz)=1
1111 GT ((S xor OV) or 2) =0

CHAPTER 5 INSTRUCTIONS

SHL Shift Logical to the Left
[Syntax] (1) SHL regl, reg2
(2) SHL imm5, reg2
[Operation] (1) GR[reg?] ~ GRJ[reg?] logically shift left by GR[reg1]
(2) GR[reg2] ~ GRJ[reg?2] logically shift left by zero-extend(immb5)
[Format] (1) Format |
(2) Format I

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 10 9 54 0

@) | 000100 | reg2 | regl |

15 10 9 54 0

2 | 010100 | reg2 |imm5|

CY : Assumes 1 if the last shift-out bit is 1. Otherwise, assumes 0. If the amount
of the shift is 0, the CY flag is 0.

ov: o0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2?] is zero. Otherwise, assumes 0.

(1) SHL - Shift logical left by amount specified by register
(2) SHL - Shift logical left by amount specified by immediate data (5 bits)

(1) The instruction logically shifts the word in reg2 to the left (puts 0 on the LSB) by
the amount specified by the low-order five bits in regl, then writes the result into
reg2. Ifthe amountis 0, the reg2 value is not changed by the shift. The amount
may be 0 to +31, being represented by five bits.

(2) The instruction logically shifts the word in reg2 to the left (puts 0 on the LSB) by
the amount specified by the five bits of immediate data, zero-extended to a word,
and writes the result into reg2. If the amount is 0, the reg2 value is not changed
by the shift. The amount may be 0 to +31.

None

93

V830 FAMILY TM

USER'S MANUAL

94

SHLD3 Shift to the Left of Double word on 3 operands
[Syntax] SHLD3 regl, reg2, reg3

[Operation] GR[reg3] « (GR[reg3], GR[reg2]) << regl

[Format] Format VIII

[Operation code]

[Flags]

[Instruction]

[Description]

[Supplement]

[Exception]

15 109 54 031 26 25 2120 O

| 111110 | reg2 |regl | 011000 | RFU |regS |

CYy:. —
ov: —
S | —
Z I —

SHLD3 - Shift left double word

The instruction logically shifts the 64 bits of data obtained by concatenating reg3
(high order) and reg2 (low order) to the left by the amount specified by the low-order
five bits in regl, then outputs the high-order 32 bits of the result into reg3. If regl
is 0, the reg3 data remains as is. The high-order 27 bits in regl are ignored. The
contents of regl and reg2 remain as is.

A timing restriction is imposed on SHLD3 instruction input operand reg3. If an
instruction to update reg3 is not issued within three cycles before the issue of the

SHLD3 instruction, the SHLD3 instruction will begin after a one-cycle halt (stall).

None

CHAPTER 5 INSTRUCTIONS

SHR Shift Logical to the Right
[Syntax] (1) SHR reg1l, reg?
(2) SHR immb5, reg2
[Operation] (1) GR[reg2] ~ GR[reg?2] logically shift right by GR[reg1]
(2) GR[reg?] ~ GRJ[reg?] logically shift right by zero-extend(imm5)
[Format] (1) Format |
(2) Format I

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 0
(1) | 000101 | reg2 | regl |

15 109 654 0
() | 010101 | reg2 |imm5 |

CY : Assumes 1 if the last shift-out bit is 1. Otherwise, assumes 0. If the amount
of the shift is 0, the CY flag is 0.

Oov: 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

(1) SHR - Shift logical right by amount specified by register
(2) SHR - Shift logical right by amount specified by immediate data (5 bits)

(1) The instruction logically shifts the word in reg2 to the right (puts 0 on the MSB)
by the amount specified by the low-order five bits in regl, then writes the result
into reg2. If the amount is 0, the reg2 value is not changed by the shift. The
amount may be 0 to +31, being represented by five bits.

(2) The instruction logically shifts the word in reg2 to the right (puts 0 on the MSB)
by the amount specified by the five bits of immediate data, zero-extended to a
word, and writes the result into reg2. If the amount is 0, the reg2 value is not
changed by the shift. The amount may be 0 to +31.

None

95

V830 FAMILYTM USER'S MANUAL

96

SHRD3 Shift to the Right of Double word on 3 operands
[Syntax] SHRD3 regl, reg2, reg3

[Operation] GR[reg3] « (GR[reg3], GR[reg2]) >> regl

[Format] Format VIII

[Operation code]

[Flags]

[Instruction]

[Description]

[Supplement]

[Exception]

15 109 654 031 2625 21 20 16
| 111110 | reg2 | regl |01100]4 RFU | reg3 |

CYy:. —
ov: —
S | —
Z I —

SHRD3 - Shift right double word

The instruction logically shifts the 64 bits of data obtained by concatenating reg3
(high order) and reg2 (low order) to the right by the amount specified by the low-order
five bits in regl, then outputs the low-order 32 bits of the result into reg3. If regl
is 0, the reg2 data is stored into reg3. The high-order 27 bits in regl are ignored.
The contents of regl and reg2 remain as is.

A timing restriction is imposed on SHRD3 instruction input operand reg3. If an
instruction to update reg3 is not issued within three cycles before the issue of the

SHRD3 instruction, the SHRD3 instruction will begin after a one-cycle halt (stall).

None

CHAPTER 5 INSTRUCTIONS

ST

Store

[Syntax]

[Operation]

[Format]

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

(1) ST.B reg2, displ6[regl]
(2) ST.H reg2, disp16[regl]
(3) ST.W reg2, displ6[regl]

(1) adr ~ GR[regl] + (sign-extend)displ6
Store-Memory(adr, GR[reg?2], Byte)

(2) adr « GR[regl] + (sign-extend)displ6
Store-Memory(adr, GR[reg2], Halfword)

(3) adr ~ GR[regl] + (sign-extend)displ6
Store-Memory(adr, GR[reg2], Word)

Format VI

15 109 54 031 16
| 11010% |re92 | regl| disp16
(0B: 00 =(1),01=(2),11=(3)

CYy: —
ov: —
S | —
Z . —

(1) ST.B - Store bhyte
(2) ST.H - Store halfword
(3) ST.W - Store word

(1) The instruction adds the data in regl to the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit address. It stores the low-order one

byte of reg2 data at the resulting address.

(2) The instruction adds the data in regl to the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit address. It stores the low-order two
bytes of reg2 data at the resulting address. Bit 0 of the unsigned 32-bit address

is masked to O.

(3) The instruction adds the data in regl to the 16-bit displacement, sign-extended
to a word, to produce an unsigned 32-bit address. It stores the word from reg2
atthe resulting address. Bits 0 and 1 of the unsigned 32-bit address are masked

to 0.

None

97

V830 FAMILYTM USER'S MANUAL

98

STBY Standby
[Syntax] STBY
[Operation] Stop
[Format] Format 1X
_ 15 109 10
[Operation code] |011010 | RFU | 1|
[Flags] CY: —
ov: —
S | —
Z . —

[Instruction]

[Description]

[Exception]

STBY - Standby

The instruction stops the CPU and places the system in stop mode.

None

CHAPTER 5 INSTRUCTIONS

STSR Store contents of System Register
[Syntax] STSR reglD, reg2

[Operation] GR[reg2] ~ SR[regID]

[Format] Format I

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 o0
| 011010| reg2 |regID|

ovV: —

STSR - Store contents of system register

The instruction writes the contents of the system register identified by the system
register number (reglD) into reg2. There is no influence on the system register.
System register numbers uniquely identify system registers. If the STSR instruction
is executed on a reserved system register, however, the operation of the instruction

will be unpredictable.

None

99

V830 FAMILYTM USER'S MANUAL

SUB Subtract
[Syntax] SUB regl, reg2

[Operation] GR[reg?] - GR[reg2?] - GR[regl]

[Format] Format |

15 109 54 0

[Operation code] | 000010| reg2 | regl |

[Flags] CY : Assumes 1 if there is a borrow from the MSB. Otherwise, assumes 0.
OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.
S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.
Z : Assumes 1 if GR[reg?2] is zero. Otherwise, assumes 0.

[Instruction] SUB - Subtract

[Description] The instruction subtracts the word in regl from that in reg2 and stores the difference
into reg2. The contents of regl remain as is.

[Exception] None

100

CHAPTER 5 INSTRUCTIONS

TRAP Software Trap
[Syntax] TRAP vector
[Operation] if PSW.NP =1
then fatal exception (MACHINE FAULT)
else if PSW.EP = 1
then FEPC ~ return PC
FEPSW ~ PSW
ECR.FECC « exception code
PSW.NP <1
PSW.ID <1
PC « <NMI handler address>
else EIPC ~ return PC
EIPSW ~ PSW
ECR.EICC « exception code
PSW.EP <1
PSW.ID <1
PC ~ <vector adr>
[Format] Format I
15 10 9 0

[Operation code]

[Flags]

[Instruction]

[Description]

| 011000 | vector

CYy: —
ov: —
S | —
Z . —

TRAP - Trap

If the PSW NP flag is set to 1, it indicates a fatal exception. The processor performs
fatal exception handling.

If the PSW NP flag is set to 0 and the EP flag to 1, it indicates a double exception.
In this case, the instruction saves the return PC and PSW into FEPC and FEPSW
and sets the exception code (FECC in the ECR) and the PSW flags (the NP and ID
flags). Program execution then jumps to the NMI handler address to begin exception
handling. There is no influence on the condition flags.

If both the PSW NP and EP flags are set to 0, the instruction saves the return PC
and PSW into EIPC and EIPSW and sets the exception code (EICC in the ECR) and
the PSW flags (the EP and ID flags). Program execution then jumps to the trap
handler address corresponding to the trap vector (0-31) identified by vector to begin
exception handling. There is no influence on the condition flags.

101

V830 FAMILYTM USER'S MANUAL

The return PC gives the address of the instruction subsequent to the TRAP
instruction.

[Exception] None

102

CHAPTER 5 INSTRUCTIONS

XOR Exclusive OR
[Syntax] XOR regl, reg2

[Operation] GR[reg2] ~ GR[reg2] XOR GRJregl]

[Format] Format |

[Operation code]

[Flags]

[Instruction]

[Description]

[Exception]

15 109 54 0
| 001110 | reg2 | regl |

CYy: —

ov: 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.
Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

XOR - Exclusive OR

The instruction takes the exclusive OR of the words in regl and reg2 and stores the
result into reg2. The contents of regl remain as is.

None

103

V830 FAMILYTM USER'S MANUAL

XORI Exclusive OR of Immediate and register data
[Syntax] XORI imm16, regl, reg2
[Operation] GR[reg2] ~ GR[regl] XOR zero-extend(imm16)
[Format] Format V
15 109 54 031 16
[Operation code] | 101110 |reg2| regl| immi6
[Flags] CY: —
ov: o0

[Instruction]

[Description]

[Exception]

104

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.
Z . Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

XORI - Exclusive OR of immediate data (16 bits) and register

The instruction takes the exclusive OR of the word in regl and the 16 bits of
immediate data, zero-extended to a word, and stores the result into reg2. The

contents of regl remain as is.

None

CHAPTER 5 INSTRUCTIONS

5.4 INSTRUCTION EXECUTION CYCLES

This section lists the execution cycles for each instruction. The number of actual execution cycles will fall
between the repeat and the latency. The meanings of the abbreviations and other quantities used in the tables
given in this section are as follows:

Latency : Period between the instruction beginning to run and its ending

Repeat : If the current instruction uses the same arithmetic/logic unit as the subsequent instruction, the
repeat is defined as the period between the current instruction beginning to run and the
subsequent instruction becoming ready to run. Instructions begin to run once they get their
required operands.

<1>: Data cache hit or internal RAM access
<2>: Data cache miss
<3>: External RAM (uncachable area) access

: Number of clock cycles for burst bus cycle execution (external clock)
: Number of clock cycles for single bus cycle execution (external clock)
. Frequency ratio between internal and external clocks (n = 2 or n = 3)
. Wait time for synchronization with external clock

s=0orlifn=2.

s=0,1,0r2ifn=3

»w S n W

105

V830 FAMILYTM USER'S MANUAL

Table 5-4. Instruction Execution Cycles (1/3)

Instruction
Mnemonic Operand length Latency Repeat
in bytes
Load/store LD.B displ16[regl], reg2 4 <1>2 <1>1
LD.H displ16[regl], reg2 4 <2> nxB+10+sNote 1 | <2> nxB+9+s
LD.W disp16[regl], reg2 4 <3> nxS+9+gNote 1 <3> nxS+8+s
ST.B reg2, displ6[regl] 4 nxS+5+s 1
ST.H reg2, displ6[regl] 4
ST.W reg2, displ6[regl] 4
BILD [regl], [reg2] 4 nxB+10+sNote 1 nxB+10+s
BIST [reg2], [regl] 4 nxB+7+sNote 1 nx(B-1)+10+s
BDLD [regl], [reg2] 4 nxB+10+sNote 1 nxB+10+s
BDST [reg2], [regl] 4 nxB+7+sNote 1 nx(B-1)+10+s
Input/output | IN.B displ16[regl], reg2 4 nxS+10+sNote 1 nxS+9+s
IN.H displ16[regl], reg2 4
IN.W displ6[regl], reg2 4
OuUT.B reg2, disp16[regl] 4 nxS+6+sNote 1 nxS+9+s
OUT.H reg2, displ6[regl] 4
OUT.W reg2, displ6[regl] 4
Arithmetic MOV regl, reg2 2 1 1
operation
imm5, reg2
MOVHI imm16, regl, reg2 4 1 1
ADD regl, reg2 2 1 1
imm5, reg2
ADDI imm16, regl, reg2 4 1 1
MOVEA imm16, regl, reg2 4 1 1
SUB regl, reg2 2 1 1
MUL regl, reg2 2 4Note 2 2
MULU regl, reg2 2 4Note 2 2
DIV regl, reg2 2 37 37
DIVU regl, reg2 2 35 35
CMP regl, reg2 2 1 1
imm5, reg2
SETF imm5, reg2 2 2 1
MIN3 regl, reg2, reg3 4 2 1
MAX3 regl, reg2, reg3 4 2 1

Notes 1. A write bus cycle may be added because the write buffer is emptied for execution.

2. The flag requires three latency cycles. If the next instruction references the flag (as in the case

106

of a conditional branch instruction), a flag hazard will result.

CHAPTER 5 INSTRUCTIONS

Table 5-4. Instruction Execution Cycles (2/3)

Instruction
Mnemonic Operand length Latency Repeat
in bytes
Sum-of- MUL3 regl, reg2, reg3 4 3 1
products/ MAC3 regl, reg2, reg3 4 3Note 1 1Note 1
saturafable MULI imm16, regl, reg2 4 3 1
operation
MACI imm16, regl, reg2 4 3 1
MULT3 regl, reg2, reg3 4 3 1
MACT3 regl, reg2, reg3 4 3Note 1 1Note 1
SATADD3 regl, reg2, reg3 4 2 1
SATSUB3 regl, reg2, reg3 4 2 1
Logical OR regl, reg2 2 1Note 2 1
operation ORI imm16, regl, reg2 4 1Note 2 1
AND regl, reg2 2 1Note 2 1
ANDI imm16, regl, reg2 4 1Note 2 1
XOR regl, reg2 2 1Note 2 1
XORI imm16, regl, reg2 4 1Note 2 1
NOT regl, reg2 2 1Note 2 1
SHL regl, reg2 2 2Note 2 1
imm5, reg2
SHR regl, reg2 2 2Note 2 1
imm5, reg2
SAR regl, reg2 2 2Note 2 1
imm5, reg2
SHLD3 regl, reg2, reg3 4 2Note 1 1Note 1
SHRD3 regl, reg2, reg3 4 2Note 1 1Note 1

Notes 1. A one-cycle halt occurs unless an instruction which acts on reg3 as its destination is executed
up to three cycles before the issue of this instruction.
2. The flag requires two latency cycles. If the next instruction references the flag (as in the case
of a conditional branch instruction), a flag hazard will result.

107

V830 FAMILYTM USER'S MANUAL

Table 5-4. Instruction Execution Cycles (3/3)

Instruction
Mnemonic Operand length Latency Repeat
in bytes
Branch | JMP [regl] 2 3Note 1 3
JR disp26 4 3Note 1 3
JAL disp26 4 3Note 1 3
Bcond disp9 2 3 (taken)Note 1 3 (taken)
1 (not taken)Note 2 1 (not taken)
ABcond disp9 2 1 (History available)Note 1 | 1 (History available)
3 (History unavailable) 3 (History unavailable)
Special | LDSR reg2, reglD 2 5 5
STSR regiD, reg2 2 5 2
TRAP vector 2 5 5
RETI — 2 5Note 1 5
CAXI displ6[regl], reg2 4 nxS+18+sNote 3 nxS+18+s
HALT — 2 5Note 3 J—
STBY — 2 5Note 3 —
BRKRET — 2 5Note 1 5
El — 2 4 4
DI — 2 4 4
Notes 1. If the branch address is not a multiple of 4 and a 32-bit instruction exists at the branch address,

108

a one-cycle halt occurs.

2. If the instruction next to the high-speed (advanced) branch (ABcond) instruction is 32 bits long

and its address is not a multiple of 4, a one-cycle halt will occur when program execution exits
from the loop.

3. Since the execution is preceded by the emptying of the write buffer, a write bus cycle could be

added.

CHAPTER 6

INTERRUPTS AND EXCEPTIONS

Interrupts are events which occur independently of program execution. They are classified into maskable

and nonmaskable interrupts.

In contrast, exceptions are events which are directly related to program

execution. Interrupts and exceptions do not differ greatly in their control flow, butinterrupts are assigned higher
handling priorities than exceptions. Fatal exceptions, however, are assigned higher priorities than interrupts.

Under the V830 Family architecture, the following interrupts and exceptions may occur. When an exception,
maskable interrupt, or nonmaskable interrupt occurs, control is passed to a handler at an address which is
predetermined a given cause. The cause of an exception can be identified by means of the exception code
stored in the ECR (Exception Cause Register). The pertinent handler analyzes the contents of the ECR so
that it can handle the exception or interrupt appropriately.

Table 6-1. Exception/Interrupt Source Codes

Category | Exception | Interrupt Handler Return PC
Exception/interrupt code request addressNotel
ECRNote 1| npame
Reset Interrupt FFFOH RESET FFFFFFFOH | Indefinite
Fatal exception Exception — FAULT FFFFFFEOH | current PC
NMI Interrupt FFDOH NMI FFFFFFDOH | next PC
Double exception Exception | Note 2 NMI FFFFFFDOH | current PC
TRAP instruction (parameter 0x1n) Exception | FFBnH TRAP1n | FFFFFFBOH | next PC
TRAP instruction (parameter 0x0n) Exception | FFAnH TRAPONn | FFFFFFAOH | next PC
Invalid operation code Exception | FF90H |_OPC FFFFFF90H current PC
Division by zero Exception | FF80H DIVO FFFFFF80H current PC
Interrupt level n (n = 0-15) | HWCC.IHA = 0 | Interrupt FENnOH INTON FFFFFENOH | next PC
HWCC.IHA =1 INT1n FEOOOONOH

Notes 1. Level n is represented by a hexadecimal number (n = 0-F).
2. Exception code of the exception which caused the double exception

109

V830 FAMILY T USER'S MANUAL

6.1 INTERRUPT HANDLING

6.1.1 Maskable Interrupts

When a maskable interrupt occurs, the processor performs the following processing and passes control
to the handler routine. It uses EIPC and EIPSW as status save registers.

Maskable interrupts are masked according to the OR of the NP, EP, and ID bits of the PSW. In addition,
if interrupt level n indicated by INTVO-INTV3 is lower than the PSW-permitted interrupt level indicated by
PSW bits 10-13 (n < 10-13), the interrupt is not accepted. It is therefore impossible to inhibit interrupts at the
highest level (n = 15) by assigning a permitted interrupt level.

<1>
<2>
<3>
<4>
<5>
<6>

<7>

110

C Maskable interrupt)

Ignored
Ignored
Ignored
0
Interrupt level Ignored
n=PSW. |

EIPC —=— Return PC

EIPSW -— PSW

ECR. EICC =— Exception code
PSW.EP =— 1

PSW.ID =— 1

PSW. 10-I3 =—— PSW.l1 + 1

(15 if PSW.I = 15)

C Jump to handler address)

Save the return PC in EIPC.

Save the current PSW in EIPSW.

Write the exception code into the low-order 16 bits (EICC) of the ECR.

Set the PSW EP bit.

Set the PSW ID bhit.

Set the accepted interrupt level n plus 1 (n + 1) in the PSW | (10-13) field. If the accepted interrupt
level is the highest (n = 15), 15 is set.

Jump to the handler address.

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.1.2 Nonmaskable Interrupts
If anonmaskable interrupt caused by the NMI input occurs, the processor performs the following processing

and passes control to the handler routine.

It uses FEPC and FEPSW as status save registers.

If a

nonmaskable interrupt request is issued while a nonmaskable interrupt is being handled (the PSW NP bit is
1), the request is held within the processor (if a nonmaskable interrupt request is issued during the period
of internal processing for clearing the latch immediately after the beginning of nonmaskable interrupt handling,
the request is not held with the latch within the processor). The processor detects a nonmaskable interrupt
at the falling edge of the NMI input. Therefore, when issuing a nonmaskable interrupt request, deactivate
then reactivate the NMI input.

<1>
<2>
<3>
<4>
<5>
<6>

C Nonmaskable interrupt)

The interrupt request is held
1 within the processor. When

the NP bit becomes 0, the

processor begins handling of

the interrupt.
0

FEPC =— Return PC

FEPSW =— PSW

ECR. FECC = Exception
code

PSW.NP =—1

PSW.ID —1
I
CJump to handler address)

Save the return PC in FEPC.
Save the current PSW in FEPSW.

Write the exception code into the high-order 16 bits (FECC) of the ECR.

Set the PSW NP bit.
Set the PSW ID bhit.
Jump to the handler address (FFFFFFDOH).

111

V830 FAMILY T USER'S MANUAL

6.2 EXCEPTION HANDLING

When an exception occurs, the processor performs the following processing and passes control to the
handler routine.

Exception
occurrence

1 Fatal exception
0
1 Double exception
PSW. EP
0
EIPC =— Return PC FEPC —=— Return PC DPC = Return PC
EIPSW —=— PSW FEPSW —~— PSW DPSW — PSW
ECR. EICC = Exception ECR. FECC = Exception PSW.DP — 1
code code PSW.NP — 1
PSW.EP =— 1 PSW.NP =— 1 PSW.EP — 1
PSW.ID — 1 PSW.ID =— 1 PSW.ID — 1

(Jump to handler address) (Jump to handler address) (Jump to handler address)

<1> If the PSW NP bit has already been set, go to <8> fatal exception handling.
<2> |If the PSW EP bit has already been set, go to <9> double exception handling.
<3> Save the return PC in EIPC.
<4> Save the current PSW in EIPSW.
<5> Write the exception code into the low-order 16 bits (EICC) of the ECR.
<6> Set the EP and ID bits of the PSW.
<7> Jump to the handler address.
<8> Fatal exception handling
(a) Save the return PC in DPC.
(b) Save the current PSW in DPSW.
(c) Setthe DP, NP, EP, and ID bits of the PSW.
(d) Jump to the handler address (FFFFFFEQH).
<9> Double exception handling
(a) Save the return PC in FEPC.
(b) Save the current PSW in FEPSW.
(c) Write the exception code into the high-order 16 bits (FECC) of the ECR.
(d) Set the NP and ID bits of the PSW.
(e) Jump to the handler address (FFFFFFDOH).

112

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.3 RETURN FROM EXCEPTION/INTERRUPT

6.3.1 Return from Exception/Interrupt
The RETI instruction is used for return from any exception and interrupt events other than fatal exceptions.

RETI instruction

1 Double exception

PC ~ EIPC PC < FEPC
PSW =— EIPSW PSW <— FEPSW

Jump to PC Jump to PC

<1> Read the return PC and PSW from FEPC and FEPSW when the PSW NP bit is 1 or from EIPC and
EIPSW when the PSW NP bit is 0.
<2> Restore the return PC and PSW and jump to the PC.

6.3.2 Return from Fatal Exception Handling Routine
The BRKRET instruction is used for return from fatal exception handling.

BRKRET
instruction

PC =— DPC
PSW =— DPSW

Jump to PC

<1> Read the return PC and PSW from DPC and DPSW.
<2> Restore the return PC and PSW and jump to the PC.

113

V830 FAMILY ™ USER'S MANUAL

6.4 PRIORITIES OF INTERRUPTS AND EXCEPTIONS

The priorities assigned to interrupts and exceptions are given below. If multiple interrupts and/or exceptions
occur at the same time, they are handled according to their priorities.

RESET | NMI INT Trap Invalid operation| Division by zero

instruction | code exception exception
RESET 0 O O 0 0
NMI X - - - -
INT X 1 - - -
Trap instruction X 1 1 — _
Invalid operation code exception X 1 1 — —
Division by zero exception x 1 1 — —

O : The event on the left overrides that at the top.

x : The event on the left is overridden by that at the top.

— : The events on the left and at the top do not occur at that time.

~ : The event on the left is assigned a higher priority than that at the top.
1 : The event at the top is assigned a higher priority than that on the left.

114

CHAPTER 7 INTERNAL MEMORY

This chapter describes the functions of the built-in cache memory and RAM devices, as well as their retrieval
function.

7.1 BUILT-IN CACHE
The V830 Family has a 4K-byte x 4 internal memory, consisting of four blocks (instruction cache, data cache,
instruction RAM, and data RAM). The V830 Family allows any of these internal memory blocks to be accessed

in one cycle.

Figure 7-1. Built-In Cache Configuration

Instruction bus

V830CPU

core]
Sl

Decoder Instruction RAM

Instruction cache

K< > External memory

Execution unit

Data cache

7~
—

Data bus

T T T T

)

Data RAM

Caution Data can not be written into the instruction cache or instruction RAM.
A instruction can not be written into the data cache or data RAM.

7.1.1 Instruction Cache

The instruction cache memory consists of 128 32-byte blocks, having a total capacity of 4K bytes. Each
block consists of two sub-blocks (16-byte), and has a tag and two valid bits, namely, V1 (for the high-order
16 bytes of each 32-byte block) and IVO (for the low-order 16 bytes). These valid blocks indicate whether
the contents of each sub-block are valid or invalid. If a cache error occurs, the memory is refilled in units of
sub-blocks.

Those instructions that can be cached in the instruction cache are limited to an instruction string fetched
from a cachable area. No instructions in the built-in instruction RAM are cached, however.

115

V830™ FAMILY TM USER'S MANUAL

Figure 7-2. Instruction Cache Configuration

31 12 11 543210
Tag part Data part (32 bytes)
TAG INDEX 16 bytes 16 bytes
7 bits
L]
L[] L] L]
L]
Retrieval of block
indicated by INDEX
31 12 11 10
AN
oas vyl | [| [| [||
|
32 bits
20 bits
20 bits
1 I Instruction data
Comparator

7.1.2 Instruction Cache Tag Retrieval
The V830 Family can retrieve the tags of those instructions cached in the instruction cache. The V830
Family recognizes an instruction string that has been cached by generating the addresses of the cached
instructions from the tags. The ICTR registers are used for tag retrieval. There are 128 ICTR registers.
These ICTR registers are mapped in the 1/0 space (FAOOOO00H-FAOOOFFFH). Numbers ICTROto ICTR127
are assigned to the registers, each of which is mapped to an address where bits 4 to 0 are 0s. These numbers
also correspond to the block numbers of the cache.

116

CHAPTER 7 INTERNAL MEMORY

(1) Instruction cache tag register
The instruction cache tag registers are used to retrieve the tags of the instructions cached in the instruction
cache. To access these registers, use the IN.W or OUT.W instruction.

ICTR addressing method (FAOOOXXXH)

31

1211 54 0

11111010000000000000

INDEX X X X X X

X: Don't care

Bit position

Field name

Meaning

11-5

INDEX

Index

Specifies the address of a built-in cache tag.

ICTR contents

31 1211109 0
T eyl
ICTAG vy RFU
il0
Bit position Field name Meaning
31-12 ICTAG Instruction Cache Tag
Tag of a block specified by the index of the instruction cache.
11 V1 Instruction Cache Valid Bit
Indicates that the high-order sub-block specified by the index is valid.
IV1 =0: invalid
IV1 = 1: valid (The sub-block matches the contents of the external
memory specified by ICTAG.)
10 VO Instruction Cache Valid Bit
Indicates that the low-order sub-block specified by the index is valid.
IVO = 0: invalid
IVO = 1. valid (The sub-block matches the contents of the external
memory specified by ICTAG.)
9-0 RFU Reserved field (must be fixed to 0)

(2) Reading cache tags
The V830 Family reads a register, ICTRn, for an instruction cache block to be retrieved. Bits 31 to 12
of the data thus read indicate a tag, while bits 11 and 10 correspond to the valid bits of the related sub-

blocks.

To read register ICTRn, use the IN.W instruction.

Data read from ICTR

L
ICTAG

1211109 0
T T 17 T

(
VIV
110

117

V830™ FAMILY TM USER'S MANUAL

(3) Writing cache tags

The V830 Family writes data, with a specified cache tag and valid bits, to ICTRn for the instruction cache
block to be retrieved. This operation enables modification of the cache tag. The branch history (with instruction
ABcond) of the written block is then erased.

To write in a cache tag, use OUT.W instruction.

Data to be written to ICTR
31 121110 9 0
] T T T T T T 11

|
V|V
ICTAG N RFU

7.1.3 Data Cache

The data cache memory consists of 256 16-byte blocks, having a capacity of 4K bytes. Each block has
a tag and valid bits. The valid bits indicate whether the contents of each block are valid or invalid. If a cache
error occurs, the memory is refilled in units of blocks. The memory is refilled only when the V830 Family makes
a cache error while reading data (write-through mode). Memory is not refilled when writing data.

Also, the data to be cached in the data cache is limited to that data in a cachable area. Data in data RAM
or uncachable area is not cached.

Figure 7-3. Data Cache Configuration

31 12 11 432 0 Tag part Data part
TAG | INDEX | | | T6 bytes
8 bits

L] L]
L] L]
L] L]
Retrieval of block
indicated by INDEX

31 1211

DCTAG |9
20 bits 20 bits 32 bits
L
Comparator Data

S

118

CHAPTER 7 INTERNAL MEMORY

7.1.4 Data Cache Tag Retrieval

The V830 Family can retrieve the tags of data cached in the data cache. The V830 Family generates the
addresses of the cached data from these tags to locate the cached data.

The DCTR registers are used for tag retrieval. There are 256 DCTR registers, which are mapped to the
I/0 space (F2000000H-F2000FFFH). Numbers DCTRO to DCTR255 are assigned to these registers, which
are each mapped to an address where bits 3to 0 are 0s. These numbers also correspond to the block numbers
of the cache.

(1) Data cache tag registers
These registers are used for data cache tag retrieval.
To retrieve tags, use the IN.W or OUT.W instruction.

DCTR addressing method (F2000XXXH)

31 1211 4 3 0
T ! L LI
11110010000000000000 INDEX X X X X
X:Don't care
Bit position Field name Meaning
11-4 INDEX Index

Specifies the address of a built-in data cache tag.

DCTR contents

31 121110 0
T D T
DCTAG \V] RFU
Bit position Field name Meaning
31-12 DCTAG Data Cache Tag

Tag of a block specified by the index of the data cache.

11 DV Data Cache Valid Bit
Indicates that the block specified by the index is valid.
DV = 0: invalid

DV = 1: valid (The block matches the contents of the external
memory specified by DCTAG.)

10-0 RFU Reserved field (must be fixed to 0)

119

V830™ FAMILY TM USER'S MANUAL

(2) Reading cache tags
The V830 Family reads the register, DCTRn, for the data cache block to be retrieved. Bits 31 to 12 of the
read data indicate the tag, while bit 11 corresponds to the valid bit.
To read DCTRn, use the IN.W instruction.

Data read from DCTR

31 121110 0
L

T T 1 DI I T T 1T T T T T 11
DCTAG \Y; RFU

(3) Writing cache tags
The V830 Family writes data with a specified cache tag and valid bits to the register, DCTRn, for the data
cache block to be retrieved. This operation enables modification of the cache tag.
To write data to DCTRn, use the OUT.W instruction.

Data to be written to DCTR
31
T

121110 0
L L L 1) L T T 1

1T 1T T 1T 1T T 1 11 1
DCTAG Vv RFU

7.1.5 Cache Memory Control Register

The cache memory control register is used for cache clear control. Thisis awrite-only register. If an attempt
is made to read from this register, O will be read.

To access this register, use the OUT.W instruction.

CMCR (FFFFFFF4H)

31 210
T DI |
RFU 8 %
Bit position Field name Meaning
31-2 RFU Reserved field (must be fixed to 0)
1 DCC Data Cache Clear

If this bit is set to 1, the data cache is cleared.

After the data is transferred to external memory by the external bus
master (DMA), clear the data cache before accessing the data. When
the DMA destination is the uncachable area, the data cache need not

be cleared.

0 ICC Instruction Cache Clear

If this bit is set to 1, the instruction cache is cleared.
After the program is transferred to external memory, clear the instruction

cache before executing the program. Clear the branch history, too.

120

CHAPTER 7 INTERNAL MEMORY

7.2 BUILT-IN RAM

7.2.1 Instruction RAM
The built-in instruction RAM is allocated to addresses FEOOO00OH to FEOOOFFFH in the memory space.
An instruction can be fetched from this space in one cycle. If an instruction string is stored into the built-in
instruction RAM, instruction fetching can be effected without accessing external memory. The BILD and BIST
instructions are used to transfer instructions between external memory and built-in instruction RAM.
Also, the built-in instruction RAM cannot be accessed with instructions LD or ST. If instructions LD or ST
are used to access the RAM, the operation cannot be guaranteed.

7.2.2 Instruction RAM Retrieval

The V830 Family supports a function for accessing instructions stored in instruction RAM. This function
enables instructions to be read from or written to RAM, albeit at low speed.

Instruction RAM can be referenced from addresses FEOOOOOOH to FEOOOFFFH of the I/O space. If,
however, an instruction is written into this space, the branch history of the written part is erased.

(1) Instruction RAM registers

The instruction RAM registers are used to read the contents of instruction RAM.
To access these registers, use the IN.W or OUT.W instruction.

IRAMR addressing method (FEOOOXXXH)

31 1211 210
I LI I I LI I I LI I LI I I I I I I I T I LI
OFFSET
11111110000000000000 X|X
Bit position Field name Meaning
11-2 OFFSET Offset
Specifies an address in built-in instruction RAM.

IRAMR contents

31 0
L L | | LI I [| L [T 1T
IRAMD
Bit position Field name Meaning
31-0 IRAMD Instruction RAM Data
The Contents of built-in instruction RAM

121

V830™ FAMILY TM USER'S MANUAL

(2) Instruction RAM retrieval
Using an IN.W instruction, read the desired instruction from the corresponding address in instruction RAM.

(3) Writing to instruction RAM
Using an OUT.W instruction, write the desired instruction to the corresponding address in instruction RAM.

7.2.3 Data RAM

The built-in data RAM is allocated to addresses 00000000H to 00000FFFH. Data loading/storing can be
effected from/to this space in one cycle. Data transfer between external memory and built-in RAM can be
performed at high speed by using a BDLD or BDST instruction.

Also, an instruction cannot be fetched from internal data RAM. If an instruction is fetched from internal
data RAM, operation cannot be guaranteed.

122

CHAPTER 8 RESET

The system is reset when the RESET input goes low. The on-chip hardware is initialized.

8.1 INITIALIZATION

When the RESET input goes low, the system is reset to cause the system registers and internal registers
to assume the conditions listed in Table 8-1.
When the RESET input goes high, the system is released from the reset state and starts program execution.
The registers must be set appropriately by software.

Table 8-1. Conditions of Registers after Reset

Register Abbreviation | Condition after reset
System registers | Program counter PC FFFFFFFOH
Exception/interrupt status save registers EIPC Unpredictable
EIPSW Unpredictable
NMl/double exception status save registers FEPC Unpredictable
FEPSW Unpredictable
Exception cause register ECR 0000FFFOH
Program status word PSW 00008000H
Processor ID register PIR 00008300H
Task control word TKCW 000000EOH
Debug exception status save register DPC Unpredictable
DPSW Unpredictable
Hardware configuration control word HCCWwW 00000000H
Internal registers | PLL control registerNote PLLCR 0000000XH
Cache memory control register CMCR 00000000H
Instruction cache tag register ICTR XXXXX000H
Data cache tag register DCTR XXXXXO000H
Instruction RAM register IRAMR Unpredictable

Note The condition after reset varies depending on CMODE.

123

V830 FAMILY T USER'S MANUAL

8.2 START-UP

When the V830 Family is reset, it starts program execution at FFFFFFFOH. Immediately after a reset, the

processor cannot accept interrupt requests. Before an interrupt can be used, the NP bit of the program status
word (PSW) must be set to 0.

124

APPENDIX A INSTRUCTION SUMMARY

A.1 TYPES OF INSTRUCTIONS

A.1.1 Instructions Shared with V810 T™

Load/store LD.B Load Byte
LD.H Load Halfword
LD.W Load Word
ST.B Store Byte
ST.H Store Halfword
ST.W Store Word
Arithmetic operation | MOV Move data
on integers MOVHI Move with addition of High-order Immediate data
ADD Add
ADDI Add Immediate data
MOVEA More with Addition
SuUB Subtract
MUL Multiply (signed)
MULU Multiply Unsigned
DIV Divide (signed)
DIVU Divide Unsigned
CMP Compare
SETF Ser Flag condition
Logical operation OR OR (disjunction)
ORI OR of Immediate data and register data
AND AND (conjunction)
ANDI AND of Immediate data and register data
XOR Exclusive OR
XORI Exclusive OR of Immediate and register data
NOT NOT (ones compliment)
SHL Shift Logical to the Left
SHR Shift Logical to the Right
SAR Shift Arithmetic to the Right

125

V830 FAMILY ™ USER'S MANUAL

Input/output IN.B Input Byte from port
IN.H Input Halfword from port
IN.W Input Word from port
OUT.B Output Byte to port
OUT.H Output Halfword to port
OUT.W Output Word to port
Program control JMP Jump unconditional (via register)
JR Jump Relative to PC, unconditional
JAL Jump and Link
BGT Branch on Greater than signed
BGE Branch on Greater than or Equal signed
BLT Branch on Less than signed
BLE Branch on Less than or Equal signed
BH Branch on Higher
BNH Branch on Not Higher
BL Branch on Lower
BNL Branch on Not Lower
BE Branch on Equal
BNE Branch on Not Equal
BV Branch on Overflow
BNV Branch on No Overflow
BN Branch on Negative
BP Branch on Positive
BC Branch on Carry
BNC Branch on No Carry
BZ Branch on Zero
BNz Branch on Not Zero
BR Branch Always
NOP Not always
Special LDSR Load to System Register
STSR Store contents of System Register
TRAP Software Trap
RETI Return from Trap or Interrupt
CAXI Compare and Exchange Interlocked
HALT Halt

126

APPENDIX A INSTRUCTION SUMMARY

A.1.2 Instructions Unique to V810

Operation BILD Block Instruction Load to built-in instruction RAM
on internal memory BDLD Block Data Load to built-in data RAM
BIST Block Instruction Store from built-in instruction RAM
BDST Block Data Store from built-in data RAM
V830 control El Enable maskable Interrupt
DI Disable maskable Interrupt
STBY Standby
BRKRET Break Return from fatal exception
Instructions for MUL3 Multiply on 3 operands
multimedia features MAC3 Multiply and Accumulate on 3 operands
MULI Multiply on Immediate and register data
MACI Multiply and Accumulate on immediate and register data
MULT3 Multiply with Truncation on 3 operands
MACT3 Multiply and Accumulate with Truncation on 3 operands
SATADDS3 Saturatable Addition on 3 operands
SATSUB3 Saturatable Subtraction on 3 operands
MIN3 Minimum on 3 operands
MAX3 Maximum on 3 operands
SHLD3 Shift to the Left of Double word on 3 operands
SHRD3 Shift to the Right of Double word on 3 operands
ABGT Advanced Branch on Greater than signed
ABGE Advanced Branch on Greater than or Equal signed
ABLT Advanced Branch on Less than signed
ABLE Advanced Branch on Less than or Equal signed
ABH Advanced Branch on Higher
ABNH Advanced Branch on Not Higher
ABL Advanced Branch on Lower
ABNL Advanced Branch on Not Lower
ABE Advanced Branch on Equal
ABNE Advanced Branch on Not Equal
ABV Advanced Branch on Overflow
ABNV Advanced Branch on No Overflow
ABN Advanced Branch on Negative
ABP Advanced Branch on Positive

127

V830 FAMILY ™ USER'S MANUAL

Instructions for ABC Advanced Branch on Carry

multimedia features ABNC Advanced Branch on No Carry
ABZ Advanced Branch on Zero
ABNZ Advanced Branch on Not Zero
ABR Advanced Branch Always

128

APPENDIX A INSTRUCTION SUMMARY

A.2 INSTRUCTIONS (LISTED ALPHABETICALLY)

The instructions are listed below in alphabetic order of their mnemonics.

Explanation of list format

Instruction Operand(s) Format|CY|OV| S | Z Function Page
ADD regl, reg2 | ool ol o
%{_J
Instruction Instruction Indicates how each flag changes. Identifies the page
mnemonic format —: Does not change. containing explanation
0 : Changes. in Section 5.3.
0 : BecomesO.
1 : Becomes 1.
/

Abbreviations of operands

Abbreviation Meaning

regl General-purpose register (used as a source register)

reg2 General-purpose register (used mainly as a destination register,
but in some instructions, used as a source register)

reg3 General-purpose register (used mainly as a destination register,
but in some instructions, used as a source register)

immx X bits of immediate data

dispx x-bit displacement

reglD System register number

vector adr | Trap handler address corresponding to trap vector

129

V830 FAMILY ™ USER'S MANUAL

Instruction | Operand(s) | Format| CY | OV Function Page

ABC disp9 11 — — High-speed conditional branch (if Carry) 41
relative to PC.

ABE disp9 11 — — High-speed conditional branch (if Equal)
relative to PC.

ABGE disp9 1l — — High-speed conditional branch (if Greater
than or Equal) relative to PC.

ABGT disp9 " — — High-speed conditional branch (if Greater
than) relative to PC.

ABH disp9 11 — — High-speed conditional branch (if Higher)
relative to PC.

ABL disp9 11 — — High-speed conditional branch (if Lower)
relative to PC.

ABLE disp9 1l — — High-speed conditional branch (if Less
than or Equal) relative to PC.

ABLT disp9 " — — High-speed conditional branch (if Less
than) relative to PC.

ABN disp9 11 — — High-speed conditional branch (if Negative)
relative to PC.

ABNC disp9 " — — High-speed conditional branch (if Not
Carry) relative to PC.

ABNE disp9 " — — High-speed conditional branch (if Not
Equal) relative to PC.

ABNH disp9 " — — High-speed conditional branch (if Not
Higher) relative to PC.

ABNL disp9 1l — — High-speed conditional branch (if Not
Lower) relative to PC.

ABNV disp9 " — — High-speed conditional branch (if Not
Overflow) relative to PC.

ABNZ disp9 " — — High-speed conditional branch (if Not Zero)
relative to PC.

ABP disp9 11 — — High-speed conditional branch (if Positive)
relative to PC.

ABR disp9 11 — — High-speed unconditional branch (Always)
relative to PC.

ABV disp9 11 — — High-speed conditional branch (if Overflow)
relative to PC.

ABZ disp9 11 — — High-speed conditional branch (if Zero)
relative to PC.

ADD regl, reg2 | O ad Addition. regl is added to reg2 and 43
the sum is written into reg2.

imm5, reg2 | Il O ad Addition. immb5, sign-extended to a word,

is added to reg2 and the sum is written
into reg2.

130

APPENDIX A INSTRUCTION SUMMARY
Instruction| Operand(s) | Format | CY | OV Function Page
ADDI imm16, \ 0 O Addition. imm16, sign-extended to a word, 44
regl, reg2 is added to regl, and the sum is written
into reg2.
AND regl, reg2 | — 0 AND. reg2 and regl are ANDed and 45
the result is written into reg2.
ANDI imm16, \% — 0 AND. regl is ANDed with imm16, 46
regl, reg2 zero-extended to a word, and result is
written into reg2.
BC disp9 " — — Conditional branch (if Carry) relative to 47
PC.
BDLD [regl], [reg2]| VII — — Block transfer. 4 words of data are 49
transferred from external memory to
built-in data RAM.
BDST [reg2], [regl]| VII — — Block transfer. 4 words of data are 50
transferred from built-in data RAM to
external memory.
BE disp9 1l — — Conditional branch (if Equal) relative to 47
PC.
BGE disp9 11 — — Conditional branch (if Greater than or
Equal) relative to PC.
BGT disp9 11 — — Conditional branch (if Greater than)
relative to PC.
BH disp9 " — — Conditional branch (if Higher) relative to
PC.
BILD [regl], [reg2]| VII — — Block transfer. 4 words of data are 51
transferred from external memory to
built-in instruction RAM.
BIST [reg2], [regl]| VII — — Block transfer. 4 words of data are 52
transferred from built-in instruction RAM
to external memory.
BL disp9 1l — — Conditional branch (if Lower) relative to 47
PC.
BLE disp9 11 — — Conditional branch (if Less than or Equal)
relative to PC.
BLT disp9 11 — — Conditional branch (if Less than) relative
to PC.
BN disp9 " — — Conditional branch (if Negative) relative
to PC.
BNC disp9 11 — — Conditional branch (if Not Carry) relative
to PC.
BNE disp9 11 — — Conditional branch (if Not Equal) relative
to PC.
BNH disp9 11 — — Conditional branch (if Not Higher) relative

to PC.

131

V830 FAMILY ™ USER'S MANUAL

Instruction

Operand(s)

Format

CYy

oV

Function

Page

BNL

disp9

Conditional branch (if Not Lower) relative
to PC.

BNV

disp9

Conditional branch (if Not Overflow)
relative to PC.

BNZ

disp9

Conditional branch (if Not Zero) relative
to PC.

BP

disp9

Conditional branch (if Positive) relative
to PC.

BR

disp9

Unconditional branch (Always) relative
to PC.

47

BRKRET

Return from fatal exception handling

53

BV

disp9

Conditional branch (if Overflow) relative
to PC.

BZ

disp9

Conditional branch (if Zero) relative to PC.

47

CAXI

displ6
[regl], reg2

VI

Inter-processor synchronization in multi-
processor system.

54

CMP

regl, reg2

Comparison. reg2 is compared with regl
sign-extended to a word and the condition
flag is set according to the result.

The comparison involves subtracting regl
from reg2.

immb5,reg2

Comparison. reg2 is compared with imm5
sign-extended to a word and the condition
flag is set according to the result.

The comparison involves subtracting imm5,

sign-extended to a word, from reg2.

56

DI

Disable interrupt. Maskable interrupts are
disabled. DI instruction cannot disable
nonmaskable interrupts.

57

DIV

regl, reg2

Division of signed operands. reg2 is
divided by regl (signed operands).

The quotient is stored in reg2 and the
remainder in r30. The division is
performed so that the sign of the
remainder will match that of the dividend.

58

DIvVU

regl, reg2

Division of unsigned operands. reg2 is
divided by regl (unsigned operands). The
guotient is stored in reg2 and the
remainder in r30. The division is
performed so that the sign of the
remainder will match that of the dividend.

59

El

Enable interrupt. Maskable interrupts are
enabled. The El instruction cannot enable
nonmaskable interrupts.

60

HALT

Processor halt. The processor is placed
in sleep mode.

61

132

APPENDIX A

INSTRUCTION SUMMARY

Instruction

Operand(s)

Format

CYy

ov

Function

Page

IN.B

displ6
[regl], reg2

VI

Port input. displ6, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit port address. A byte of
data is read from the resulting port
address, zero-extended to a word, then
stored in reg2.

IN.H

displ6
[regl], reg2

VI

Port input. displ6, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit port address. A halfword
of data is read from the produced port
address, zero-extended to a word, and
stored in reg2. Bit 0 of the unsigned
32-bit port address is masked to 0.

IN.W

displ6
[regl], reg2

VI

Port input. displ6, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit port address. A word of
data is read from the resulting port address,
then written into reg2. Bits 0 and 1 of the
unsigned 32-bit port address are masked
to 0.

62

JAL

disp26

Jump and link. The sum of the current PC
and 4 is written into r31. disp26, sign-
extended to a word, is added to the PC
and the sum is set to the PC for control
transfer. Bit 0 of disp26 is masked.

64

JMP

[regl]

Indirect unconditional branch via register.
Control is passed to the address
designated by regl. Bit O of the address
is masked to 0.

65

JR

disp26

Unconditional branch. disp26, sign-
extended to a word, is added to the
current PC and control is passed to the
address specified by that sum. Bit 0 of
disp26 is masked to 0.

66

LD.B

displ6
[regl], reg2

VI

Byte load. displ16, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit address. A byte of data
is read from the produced address, sign-
extended to a word, then written into reg2.

LD.H

displ6
[regl], reg2

Vi

Halfword load. disp16, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit address. A halfword of
data is read from the produced address,
sign-extended to a word, then written into
reg2. Bit O of the unsigned 32-bit address
is masked to O.

LD.W

displ16
[regl], reg2

VI

Word load. disp16, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit address. A word of data
is read from the produced address, then
written into reg2. Bits 0 and 1 of the
unsigned 32-bit address are masked to 0.

67

133

V830 FAMILY ™ USER'S MANUAL

Instruction

Operand(s)

Format

CYy

oV

Function

Page

LDSR

reg2, reglD

Load into system register. The contents
of reg2 are set in the system register
identified by the system register number
(reglD).

69

MAC3

regl, reg2,
reg3

VIl

Saturatable operation on signed 32-bit
operands. regl and reg2 are multiplied
together as signed integers and the
product is added to reg3.

[If no overflow has occurred:]
The result is stored in reg3.

[If an overflow has occurred:]
The SAT bit is set. If the result is
positive, the positive maximum is
written into reg3; if the result is
negative, the negative maximum is
written into reg3.

70

MACI

imm16,
regl, reg2

Saturatable operation on signed 32-bit
operands. regl and imm16, sign-extended
to 32 bits, are multiplied together as signed
integers and the product is added to reg2
as a signed integer.

[If no overflow has occurred:]
The result is written into reg2.

[If an overflow has occurred:]
The SAT bit is set. If the result is
positive, the positive maximum is
written into reg2; if the result is
negative, the negative maximum is
written into reg2.

71

MACT3

regl, reg2,
reg3

VIl

Saturatable operation on signed 32-bit
operands. regl and reg2 are multiplied
together as signed integers and the high-
order 32 bits of the product are added to
reg3 as signed integers.

[If no overflow has occurred:]
The result is written into reg3.

[If an overflow has occurred:]
The SAT bit is set. If the result is
positive, the positive maximum is
written into reg3; if the result is
negative, the negative maximum is
written into reg3.

72

MAX3

regl, reg2,
reg3

VIl

Maximum. reg2 and regl are compared as
signed integers. The larger value is written
into reg3.

73

MIN3

regl, reg2,
reg3

VIl

Minimum. reg2 and regl are compared as
signed integers. The smaller value is
written into reg3.

74

134

APPENDIX A INSTRUCTION SUMMARY

Instruction

Operand(s)

Format

CYy

ov

Function

Page

MOV

regl, reg2

Data transfer. regl is copied to reg2 for
data transfer.

imm5, reg2

Data transfer. imm5, sign-extended to a
word, is copied into reg2 for data transfer.

75

MOVEA

imm16,
regl, reg2

Addition. The high-order 16 bits (imm16),
sign-extended to a word, are added to
regl and the sum is written into reg2.

76

MOVHI

imm16,
regl, reg2

Addition. A word consisting of the high-order
16 bits (imm16) and low-order 16 bits (0) is
added to regl and the sum is written into
reg2.

77

MUL

regl, reg2

Multiplication of signed operands. reg2
and regl are multiplied together as signed
values. The high-order 32 bits of the
product (double word) are written into r30
and low-order 32 bits are written into reg2.

78

MUL3

regl, reg2,
reg3

VIl

Multiplication of signed 32-bit operands.
reg2 and regl are multiplied together as
signed integers. The high-order 32 bits of
the product are written into reg3.

79

MULI

imm16,
regl, reg2

Saturatable multiplication of signed 32-bit
operands. regl and imm16, sign-extended
to 32 bits, are multiplied together as
signed integers.

[If no overflow has occurred:]
The result is written into reg2.

[If an overflow has occurred:]
The SAT bit is set. If the result is
positive, the positive maximum is
written into reg2; if the result is
negative, the negative maximum is
written into reg2.

80

MULT3

regl, reg2,
reg3

VIl

Saturatable multiplication of signed 32-bit
operands. regl and reg2 are multiplied
together as signed integers. The high-
order 32 bits of the product are written
into reg3.

81

MULU

regl, reg2

Multiplication of unsigned operands. regl
and reg2 are multiplied together as
unsigned values. The high-order 32 bits
of the product (double word) are written
into r30 and the low-order 32 bits are
written into reg2.

82

NOP

No operation.

47

NOT

regl, reg2

NOT. The NOT (ones complement) of
regl is taken and written into reg2.

83

OR

regl, reg2

OR. The OR of reg2 and regl is taken and
written into reg2.

84

135

V830 FAMILY ™ USER'S MANUAL

Instruction

Operand(s)

Format

CYy

oV

Function

Page

ORI

imm16,
regl, reg2

OR. The OR of regl and imm16, zero-
extended to a word, is taken and written
into reg2.

85

OouT.B

reg2,
displ6[regl]

VI

Port output. displ16, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit port address. The low-
order one byte of the data in reg2 is
output to the resulting port address.

OUT.H

reg2,
displ6[regl]

VI

Port output. displ16, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit port address. The low-
order two bytes of the data in reg2 are
output to the resulting port address. Bit 0
of the unsigned 32-bit port address is
masked to 0.

OUT.W

reg2,
displ6[regl]

VI

Port output. displ16, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit port address. The word of
data in reg2 is output to the produced port
address. Bits 0 and 1 of the unsigned 32-bit
port address are masked to 0.

86

RETI

Return from trap/interrupt handling routine.
The return PC and PSW are read from the
system registers so that program execution
will return from the trap or interrupt handling
routine.

87

SAR

regl, reg2

Arithmetic right shift. reg2 is arithmetically
shifted to the right by the displacement
specified by the low-order five bits of regl
(MSB value is copied to the MSB in
sequence). The result is written into reg2.

imm5, reg2

Arithmetic right shift. reg2 is arithmetically
shifted to the right by the displacement
specified by imm5, zero-extended to a
word. The result is written into reg2.

88

SATADD3

regl, reg2,
reg3

VIl

Saturatable addition. regl and reg2 are
added together as signed integers.

[If no overflow has occurred:]
The result is written into reg3.

[If an overflow has occurred:]
The SAT bit is set. If the result is
positive, the positive maximum is
written into reg3; if the result is
negative, the negative maximum is
written into reg3.

89

136

APPENDIX A

INSTRUCTION SUMMARY

Instruction

Operand(s)

Format

CcYy

ov

Function

Page

SATSUB3

regl, reg2,
reg3

VIl

Saturatable subtraction. regl is
subtracted from reg2 as signed integers.

[If no overflow has occurred:]
The result is written into reg3.

[If an overflow has occurred:]
The SAT bit is set. If the result is
positive, the positive maximum is
written into reg3; if the result is
negative, the negative maximum is
written into reg3.

90

SETF

imm5, reg2

Set flag condition. reg2 is set to 1 if the
condition specified by the low-order four
bits of imm5 matches the condition flag;
otherwise it is set to 0.

91

SHL

regl, reg2

Logical left shift. reg2 is logically shifted
to the left (O is put on the LSB) by the
displacement specified by the low-order
five bits of regl. The result is written into
reg2.

imm5, reg2

Logical left shift. reg2 is logically shifted
to the left by the displacement specified
by imm5, zero-extended to a word. The
result is written into reg2.

93

SHLD3

regl, reg2,
reg3

VIl

Left shift of concatenation. The 64 bits
consisting of reg3 (high order) and reg2
(low order) are logically shifted to the left
by the displacement specified by the
low-order five bits of regl. The high-
order 32 bits of the result are written into
reg3.

94

SHR

regl, reg2

Logical right shift. reg2 is logically
shifted to the right by the displacement
specified by the low-order five bits of regl
(0 is put on the MSB). The result is
written into reg2.

imm5, reg2

Logical right shift. reg2 is logically shifted
to the right by the displacement specified
by imm5, zero-extended to a word. The
result is written into reg2.

95

SHRD3

regl, reg2,
reg3

VIl

Right shift of concatenation. The 64 bits
consisting of reg3 (high order) and reg2
(low order) are logically shifted to the right
by the displacement specified by the low-
order five bits of regl. The low-order 32
bits of the result are written into reg3.

96

137

V830 FAMILY ™ USER'S MANUAL

Instruction

Operand(s)

Format

CYy

oV

Function

Page

ST.B

regz,
displ6[regl]

Vi

Byte store. displ6, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit address. The low-order
one byte of data in reg2 is stored at the
resulting address.

ST.H

regz,
displ6[regl]

\

Halfword store. displ6, sign-extended to
a word, is added to regl to produce an
unsigned 32-bit address. The low-order
two bytes of the data in reg2 are stored at
the resulting address. Bit 0 of the
unsigned 32-bit address is masked to 0.

ST.W

reg2,
displ6[regl]

\

Word store. displ6, sign-extended to a
word, is added to regl to produce an
unsigned 32-bit address. The word of data
in reg2 is stored at the resulting address.
Bits 0 and 1 of the unsigned 32-bit address
are masked to 0.

97

STBY

Processor stop. The processor is placed
in stop mode.

98

STSR

regiD, reg2

System register store. The contents of the
system register identified by the system
register number (regID) are set in reg2.

99

SUB

regl, reg2

Subtraction. regl is subtracted from reg2.
The difference is written into reg2.

100

TRAP

vector

Software trap. The return PC and PSW
are saved in the system registers:
PSW.EP =1 - Save in FEPC, FEPSW
PSW.EP = 0 - Save in EIPC, EIPSW
The exception code is set in the ECR:
PSW.EP =1 - Setin FECC
PSW.EP =0 - Setin EICC
PSW flags are set:
PSW.EP =1 - Set NP and ID
PSW.EP =0 - Set EP and ID
Program execution jumps to the trap
handler address corresponding to the trap
vector (0-31) specified by vector and
begins exception handling.

101

XOR

regl, reg2

Exclusive OR. The exclusive OR of reg2
and regl is taken and written into reg2.

103

XORI

imm16,
regl, reg2

Exclusive OR. The exclusive OR of regl
and imm16, zero-extended to a word, is
taken and written into reg2.

104

138

APPENDIX B OPERATION CODE MAP

Operation code map

Bits 15-10 Instruction syntax Format Sub-operation code
000000 MOV regl, reg2 |
000001 ADD regl, reg2 |
000010 SUB regl, reg2 |
000011 CMP regl, reg2 |
000100 SHL regl, reg2 |
000101 SHR regl, reg2 |
000110 JMP [regl] |
000111 SAR regl, reg2 |
001000 MUL regl, reg2 |
001001 DIV regl, reg2 |
001010 MULU regl, reg2 |
001011 DIVU regl, reg2 |
001100 OR regl, reg2 |
001101 AND regl, reg2 |
001110 XOR regl, reg2 |
001111 NOT regl, reg2 |
010000 MOV imm5, reg2 1
010001 ADD imm5, reg2 Il
010010 SETF imm5, reg2 I
010011 CMP imm5, reg2 1
010100 SHL imm5, reg2 I
010101 SHR imm5, reg2 1
010110 El Il
010111 SAR imm5, reg2 I
011000 TRAP vector I
011001 RETI IX 0
011001 BRKRET IX 1
011010 HALT IX 0
011010 STBY IX 1
011100 LDSR reg2, reglD I
011101 STSR regiD, reg2 I
011110 DI I

139

V830 FAMILY T USER'S MANUAL

140

Bits 15-10 Instruction syntax Format Sub-operation code
100XXX Bcond 1" 0
100XXX ABcond 1" 1
101000 MOVEA imm16, regl, reg2 Vv
101001 ADDI imm16, regl, reg2 \%

101010 JR disp26 v
101011 JAL disp26 v
101100 ORI imm16, regl, reg2 \%
101101 ANDI imm16, regl, reg2 \%
101110 XORI imm16, regl, reg2 Vv
101111 MOVHI imm16, regl, reg2 \Y,
110000 LD.B displ6[regl], reg2 VI
110001 LD.H displ16[regl], reg2 VI
110010 MULI imm16, regl, reg2 Vv
110011 LD.W displ16[regl], reg2 VI
110100 ST.B reg2, displ6[regl] VI
110101 ST.H reg2, displ6[regl] VI
110110 MACI imm16, regl, reg2 \%
110111 ST.W reg2, displ6[regl] VI
111000 IN.B displ6[regl], reg2 VI
111001 IN.H displ6[regl], reg2 VI
111010 CAXI displ6[regl], reg2 VI
111011 IN.W displ16[regl], reg2 VI
111100 OuUT.B reg2, displ6[regl] VI
111101 OUT.H reg2, displ6[regl] VI
111110 Special VII/VII
111111 OUT.W reg2, displ6[regl] VI

APPENDIX B OPERATION CODE MAP

Operation code field

Bits
12-10
000 001 010 011 100 101 110 111
Bits
15-13
000 MOV ADD SUB CMP SHL SHR JMP SAR
001 MUL DIV MULU DIVU OR AND XOR NOT
010 MOV ADD SETF CMP SHL SHR El SAR
011 TRAP RETI HALT LDSR STSR Dl
BRKRET STBY
100 Bcond/ABcond
101 MOVEA ADDI JR JAL ORI ANDI XORI MOVHI
110 LD.B LD.H MULI LD.W ST.B ST.H MACI ST.W
111 IN.B IN.H CAXI IN.W OUT.B OUT.H Special OUT.W
Conditional branch (Bcond/ABcond) condition code field
Bits
11-9
000 001 010 011 100 101 110 111
Bit
12
0 BV BC/BL BZ/BE BNH BN BR BLT BLE
1 BNV BNC/BNL BNZ/BNE BH BP NOP BGE BGT
Special operation code field
Bits
28-26
000 001 010 011 100 101 110 111
Bits
31-29
000
001
010 SATADD3 | SATSUB3 | MIN3 MAX3
011 SHLD3 SHRD3 MACT3 MAC3 MULT3 MUL3
100 BILD BDLD BIST BDST
101
110
111

141

V830 FAMILY ™ USER'S MANUAL

[MEMO]

142

APPENDIX C

[Al

ABC i 42
ABCON ... 41, 108
ABE oo 42
ABGE ..o 42
ABGT oot 42
ABH .o 42
ABL oo 42
ABLE .o 42
ABLT oo 42
ABN Lo 42
ABNC . 42
ABNE ... 42
ABNH Lo 42
ABNL Lo 42
ABNV o 42
ABNZ ..o 42
ABP o 42
ABR L 42
ABVY o 42
ABZ oo 42
ADD .o 43, 106
ADDI it 44, 106
AdAreSS SPACE ..ot 29
addressing for Bcond and ABcond instructions...... 30
addressing for JR and JAL instructions.................. 30
addressing MOdEeuuvevveeeeeiiiiire e 30
=T | S PP T TP PPPPURPRR 39
AND Lo 45, 107
ANDI oot 46, 107
arithmetic operation instructionsccccceveeeeeennns 36
assembler-reserved registercccccveeeeieeeeeninnns 17
[B]

based addressingcccoviiiiiiiiii 31
B 48
BCONA oo 47, 108
BDLD ..oeiiiiiiiiiiee e 49, 106
BDST ittt 50, 106
BE 48

INDEX

BGE ... 48
BT i 48
BH e 48
BILD et 51, 106
BIST i 52, 106
B e 48
BLE ot 48
BT e 48
BN e 48
BNC . e 48
BNE ..ottt 48
BNH ..o 48
2] | PRSP 48
BNV L 48
BNZ ..o 48
B 48
BR 48
branch inStructionscccccovvi i 37
BRKRET ...ttt 53, 108
built-in cache ... 115
BUIt-IN RAM ..o 121
BV 48
byte dataoooiiiiiiiii 27, 29
B 48
[C]

cache memory control register..........cccccvvveeeeeenn. 120
CAXI i 54, 108
CMCR e 120
CMP e 56, 106
conditional branch instruction format 33
Y e 20
[D]

data alignment...........ccciiiiiii e 28
data cache......coeeviiiiii 118
data cache tag registersccccccevveiiiiiiiieeeeneeennnn, 119
data cache tag retrievalcccoovvcciniiiiinenneeenn, 119
data RAM ...oooiiiiii e 122
ata SELS ..eiiiiiiiiiee 27
Ata TYPES .eeeieeeieeee e 27

143

V830 FAMILYTM USER'S MANUAL

DCTR oottt e e 119
debug exception status save register.................. 123
Dl 57, 108
AISPX 1ttt 39
DIV et 58, 106
diviSion by ZEroccccvvvviiiiiiie e, 109
division by zero exceptionccooeecviiiiiieeneneenn. 114
DIVU oot 59, 106
double exceptioncceeeeeiiiiiiiiiiiii, 109, 112
D 20
DPC i 22
DPSW e 22
[E]

ECR . 23
Bl e 60, 108
EICC i 23
EIPC oot 21
EIPSW ... 21
P 20
exception cause register (ECR)cccccvvvvvveerenenn. 23
exception handlingccccccieiiiiiiiiiiiiiiieee, 112
exception/interrupt source codesccccccvvreeeennn. 109
exception/interrupt status save registers

(EIPC and EIPSW)ccooiiiiiiiiiiiicee e 21
extended instruction formatcccciiiiiiiinn, 34
[F]

fatal exception ... 109, 112
fatal exception status save registers

(DPC and DPSW)coviiiiiiiiieeiiiiiee e ciieee e ssiiveea e 22
FECC oot 23
FEPC ..ottt 22
FEPSW ..ot 22
FIT e 23
format of explanations of each instruction.............. 39
P T e 23
FUT e 23
FV T 23
BT e 23
[G]

general-purpose register setcovcevvvvveeeeeneeennn, 17
global POINter.........oociiiiiei e 17
GRIX] ceteeeee ettt 39

144

[H]

halfword data............ccccceeieiiiiiiieee e, 27, 29
HALT oo 61, 108
handler stack pointerccccoiiiiiiiiis 17
hardware configuration control word (HCCW) 24
hardware-dependent registerscccccceeeviinicnnnns 17
HCCW e 24
[1]

I/O INSLIUCLIONSvviiieiiiiiie e 35
1310 e 20
ICTR e 117
DD et 20
THA 24
imm-reg instruction formatcccccceiiiiiiniins 33
immediate addressingoooecvvvviiieeieee e 31
IMIMIX ettt e e e e e e e e e e e e e aeeeeeenees 39
IN s 62
INLB et 62, 106
INCH 62, 106
INCW e 62, 106
INILTAlIZALION ... 123
INPUE-POIT (X, Y) weeeeeeeieeeeieiieieeeee e 39
iNStruction addresSSescoovvviieeeiiiiieee e 30
INStruction Cacheccccciiiiiiiiiis 115
instruction cache tag registerccccccveeevviiiinnns 117
instruction cache tag retrievalccccccccooninnnne 116
instruction execution cyclesccccceeeeviiiiiinnnen. 105
instruction format.........cccccoviiiiiiiiiiie s 33
INSLrUCtion MNEMONICvveeeeiiiiiiee e 39
INSErUCtioN RAM L.....uiiiiiiiiiiiiiie e 121
instruction RAM registersccccvvveeveeeeeevieiicnnnns 121
instruction RAM retrievalcccoveeeeiiiiiiiiniines 121
INSEIUCHION SBL ..oeiiiiiiiiei e 39
INSTPUCLIONS ...t 33
INT e 114
INEEOETS oot 28
iNternal registers.......veeeeeiiecceeee e 123
interrupt handlingccccoooiiiii e 110
interrupt level N.......eeeveeee e 109
interrupts and exceptionscccueeeeeeiieeeniniiiinnns 109
invalid operation codecccccviiiieiieee e, 109
invalid operation code exceptionccccuuvueee. 114
IRAMR ... 121

APPENDIX C INDEX

[J]

JAL o 64,
IMP e 65,
IR e 66,
[L]

[ALENCY ..o
LD ettt
LD.B ettt 67,
LD H 67,
LD.W ittt 67,
LDSR ettt 69,
INK POINEET ...
Load-Memory (X, ¥) ceeeeeeeeeieeicienneeeeeeee e e s ee s
load/store instruction format.............................
load/store INSrUCLIONScoovviieeiiiiiiiee e
logical operation INStructionscccccoevveviiinneen.
M]

MAGCS o 70,
MACH <o 71,
MACT3 et 72,
maskable iINterrupts ..o
MAXS oot 73,
medium-distance jump instruction format
MINS .o 74,
MOV et 75,
MOVEA ...ttt 76,
MOVHI Lo 77,
MUL i 78,
MULS et 79,
MULI e 80,
MULT3 et 81,
MULU Lot 82,
[N]

NIMIL e 109,
NMI/double exception status save registers
no-operand instruction formatoocccuviineen
nonmaskable interrupts.........ccccccvveie i,
NOP ittt
NOT e 83,
NP e

108
108
108

107
107
107
110
106

106
106
106
106
106
107
107
107
106

[O]

operand addreSSEeSuvvieiiiiieeeiiiiiiiieeeeeee e 31
OR e 84, 107
ORI e 85, 107
OTM ot 23
OUT et 86
OUT.B e 86, 106
OUTH e 86, 106
OUT.W . 86, 106
outline of INSLrUCHIONSceeveviiiiiiiiiieeeeeen 35
OULPUL-POIt (X, ¥, Z) cooeerreiieeieeee e cesinieeee e e 39
OV e 20
[P]

P 18
PIR o 23
PLL control registercccccocviiiiiiiiiniiieee, 123
PLLCR oot 123
priorities of interrupts and exceptions 114
processor ID register (PIR)ccccvvvivvveeieeeeeniiienns 23
program counter (PC)ooiiiiiiiiiiiiieieeee e 18
program register SEtccceevvviiiicviiiiiere e 17
Program regiSIErSuuieeiiaieeeiiiiiiiiiieeeeee e e e e 18
program status word (PSW)cccccveeeeerieeeeeniinnnns 19
PSW e 19
[R]

RD e 23
RDI et 23
reg-reg instruction formatcccccceiiiiiiinnins 33
(=T 1 SRR 39
TEUZ ettt e e e e e e e e e e e e et e e e et e e eeeeeearerarnaa 39
(5T 1 SRR 39
FEQID i 39
register addreSSiNgcuveveeeeriiieiiciieee e 31
register addressing (via register)ccccceeeeeeniinnns 31
register reserved for operationccccccevveeeeeiinnnns 17
FEQISTEr SEIS ..ottt 17
relative addressing (1o PC)........cccccvvivevveieeeeeeiiens 30
TEPEAL ..ceeeeiiiiieiitettit s e e e e e e e e e e e e e e e eeeeeeeeaeaees 105
TESEL .ot 123
RESET oot 114
RETI oo 87, 108
return from exception/interruptcccccceeeeeiiinnnns 113

145

V830 FAMILYTM USER'S MANUAL

return from fatal exception handling routine 113
REU oo 20
[S]

S e 20
SAR L 88, 107
S AT e 20
SATADDS ...ttt 89, 107
SATSUBS ..ot 90, 107
SETF et 91, 106
SHL e 93, 107
SHLDS3 ..ottt 94, 107
SHR e 95, 107
SHRDS ..ottt 96, 107
SIgN-EXIENA (X) «ooieviirerieeie e 39
software-reserved registers..........occccvvviieeeeeeeeennnnn. 17
special INSrUCIONSvvviieeiiieeee e, 38
SRIX] c oottt 39
ST e 97
ST B e 97, 106
ST H 97, 106
STW e 97, 106
562 (o 1011] (= R 17
STAMT-UP et 124
STBY et 98, 108
StOre-MemOory (X, ¥y Z) weeeeeeeeeeeeeeeieaiiiiieieeeeeaae e 39
STSR i 99, 108
SUB . 100, 106
sum-of-products/saturatable operation

INSTFUCLIONS ...t 36
system register NUMDErSccccoovvvvvcviivieeeneeeeee, 25
SYStem register Setuuviiieieiieieeeieee e 19
SYSteM rEQIStErS ..o 19, 123
[T]

task control word (TKCW)cooeveeeiiiiiiciiiiiieeeeeeeen 23
TEXE POINTET e 17
three-operand instruction format..............ccccceeen... 34
three-register operand instruction format 34
TKCW et 23
TRAP .. 101, 108
trap iNStrUCHION ...ccvvviee e 114
[U]

UNSIGNEd INTEQEIS ..vvvieeeeiee e e 28

146

[Vl
AV LSTei (o] = Lo | S TP PPURTP 39
[W]
WOId datacceevieeiiiiiiiiiiiecce e 27, 29
[X]
XOR it 103, 107
XORI i 104, 107
[Z]
Z e 7
ZEI0 FEQISTEN coiiieiiii ittt 17
ZEr0o-eXteNd (X) .ooovvvreiieieeeree e e e s s e 39

Facsimile

NEC

Message

Although NEC hastaken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that

From: .
errors may occur. Despite all the care and
precautions we've taken, you may

Name encounter problemsin the documentation.
Please complete this form whenever

Company you'd like to report errors or suggest
improvements to us.

Tel. FAX

Address

Thank you for your kind support.

North America

NEC Electronics Inc.

Corporate Communications Dept.

Fax: 1-800-729-9288
1-408-588-6130

Europe

NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea

NEC Electronics Hong Kong Ltd.
Seoul Branch

Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan

NEC Corporation

Semiconductor Solution Engineering Division
Technical Information Support Dept.

Fax: 044-548-7900

| would like to report the following error/make the following suggestion:

Document title:

Document number:

Page number:

If possible, please fax the referenced page or drawing.

Document Rating
Clarity

Technical Accuracy
Organization

Excellent Good
a a
a a
a a

Acceptable Poor
a Qa
0 Qa
a a

CS 97.8

	COVER
	Major Revision in This Edition
	PREFACE
	CHAPTER 1 INTRODUCTION
	1.1 OVERVIEW
	1.2 FEATURES
	1.3 INTERNAL CONFIGURATION OF THE CPU

	CHAPTER 2 REGISTER SETS
	2.1 PROGRAM REGISTER SET
	2.1.1 General-Purpose Register Set
	2.1.2 Program Counter (PC)

	2.2 SYSTEM REGISTER SET
	2.2.1 Program Status Word (PSW)
	2.2.2 Exception/Interrupt Status Save Registers (EIPC and EIPSW)
	2.2.3 NMI/Double Exception Status Save Registers (FEPC and FEPSW)
	2.2.4 Fatal Exception Status Save Registers (DPC and DPSW)
	2.2.5 Exception Cause Register (ECR)
	2.2.6 Processor ID Register (PIR)
	2.2.7 Task Control Word (TKCW)
	2.2.8 Hardware Configuration Control Word (HCCW)

	2.3 SYSTEM REGISTER NUMBERS

	CHAPTER 3 DATA SETS
	3.1 DATA TYPES
	3.1.1 Integers
	3.1.2 Unsigned Integers

	3.2 DATA ALIGNMENT

	CHAPTER 4 ADDRESS SPACE
	4.1 ADDRESSING MODE
	4.1.1 Instruction Addresses
	4.1.2 Operand Addresses

	CHAPTER 5 INSTRUCTIONS
	5.1 INSTRUCTION FORMAT
	5.2 OUTLINE OF INSTRUCTIONS
	5.3 INSTRUCTION SET
	5.4 INSTRUCTION EXECUTION CYCLES

	CHAPTER 6 INTERRUPTS AND EXCEPTIONS
	6.1 INTERRUPT HANDLING
	6.1.1 Maskable Interrupts
	6.1.2 Nonmaskable Interrupts

	6.2 EXCEPTION HANDLING
	6.3 RETURN FROM EXCEPTION/INTERRUPT
	6.3.1 Return from Exception/Interrupt
	6.3.2 Return from Fatal Exception Handling Routine

	6.4 PRIORITIES OF INTERRUPTS AND EXCEPTIONS

	CHAPTER 7 INTERNAL MEMORY
	7.1 BUILT-IN CACHE
	7.1.1 Instruction Cache
	7.1.2 Instruction Cache Tag Retrieval
	7.1.3 Data Cache
	7.1.4 Data Cache Tag Retrieval
	7.1.5 Cache Memory Control Register

	7.2 BUILT-IN RAM
	7.2.1 Instruction RAM
	7.2.2 Instruction RAM Retrieval
	7.2.3 Data RAM

	CHAPTER 8 RESET
	8.1 INITIALIZATION
	8.2 START-UP

	APPENDIX A INSTRUCTION SUMMARY
	A.1 TYPES OF INSTRUCTIONS
	A.1.1 Instructions Shared with V810
	A.1.2 Instructions Unique to V810

	A.2 INSTRUCTIONS (LISTED ALPHABETICALLY)

	APPENDIX B OPERATION CODE MAP
	APPENDIX C INDEX

